Increasing the Spectral Efficiency of Future Wireless Networks

Dr. Emil Björnson

Division of Communication Systems
Department of Electrical Engineering (ISY)
Linköping University, Linköping, Sweden

Docent Lecture, February 2, 2015
Outline

• Introduction: Past and Future of Wireless Communications

• Ways to Achieve Higher Spectral Efficiency
 • What does communication theory tell us?

• Basic Properties of Massive MIMO
 • Asymptotic behaviors and recent measurements

• What can we Expect from Massive MIMO?
 • New research results

• Summary
Introduction

PAST AND FUTURE OF WIRELESS COMMUNICATIONS
Incredible Success of Wireless Communications

- Last 45 years: 1 Million Increase in Wireless Traffic
- Two-way radio, FM/AM radio, satellite services, cellular networks, WiFi

Martin Cooper’s law

The number of simultaneous voice/data connections has doubled every 2.5 years (+32% per year) since the beginning of wireless.

Source: Personal Communications in 2025, Martin Cooper

Martin Cooper

Inventor of handheld cellular phones

Predictions for the Future

• Wireless Connectivity
 • A natural part of our lives

• Rapid Network Traffic Growth
 • 38% annual data traffic growth
 • Slightly faster than in the past!
 • Exponential increase
 • Extrapolation: 7x until 2020
 • 32x until 2025
 • 154x until 2030

Source: Ericsson (November 2014)
Evolving Cellular Networks for More Traffic

- **Cellular Network Architecture**
 - Area divided into cells
 - One fixed base station serves all the users

- **Increase Network Throughput [bit/s]**
 - Consider a given area

- **Simple Formula for Network Throughput:**
 \[
 \text{Throughput} = \frac{\text{Cell density \cdot Available spectrum \cdot Spectral efficiency}}{\text{bit/s in area}}
 \]

 - **Ways to achieve 1000x improvement:**

<table>
<thead>
<tr>
<th></th>
<th>Higher cell density</th>
<th>More spectrum</th>
<th>Higher spectral efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nokia (2011)</td>
<td>10x</td>
<td>10x</td>
<td>10x</td>
</tr>
<tr>
<td>SK Telecom (2012)</td>
<td>56x</td>
<td>3x</td>
<td>6x</td>
</tr>
</tbody>
</table>
Three Different Solutions

• **Higher Cell Density**
 • Traditional way to improve throughput
 • Divide cell radius by $z \rightarrow z^2$ more cells
 • Expensive: Rent and deployment cost

• **More Spectrum**
 • Suitable for coverage: Below 5 GHz
 • Already allocated for services!
 (cellular: 550 MHz, WiFi: 540 MHz)
 • Above 5 GHz: High propagation losses \rightarrow Mainly short-range WiFi?

• **Higher Spectral Efficiency**
 • Not any large improvements in the past
 • Can it be the driving force in future networks?
Ways to Achieve

HIGHER SPECTRAL EFFICIENCY
Higher Spectral Efficiency

• Spectral Efficiency of Point-to-Point Transmission
 • Governed by Shannon’s capacity limit:
 \[
 \log_2 \left(1 + \frac{\text{Received Signal Power}}{\text{Interference Power} + \text{Noise Power}} \right) \quad \text{[bit/s/Hz/User]}
 \]
 • Cannot do much: 4 bit/s/Hz → 8 bit/s/Hz costs 17 times more power!

• Many Parallel Transmissions: *Spatially focused to each desired user*

![Single-Antenna Transmission](image1)

![Multi-Antenna Transmission](image2)
Multi-User MIMO (Multiple-input Multiple-output)

- **Multi-Cell Multi-User MIMO**
 - Base stations (BSs) with M antennas
 - Parallel uplink/downlink for K users
 - Channel coherence block: S symbols

- **Theory: Hardware is Limiting**
 - Spectral efficiency roughly prop. to
 $$\min\left(M, K, \frac{S}{2}\right)$$
 - 2x improvement = 2x antennas and users (since $S \in [100,10000]$)

- **Practice: Interference is Limiting**
 - Multi-user MIMO in LTE-A: Up to 8 antennas
 - Small gains since: Hard to learn users’ channels
 - Hard to coordinate BSs

\[\text{End of the MIMO road?} \quad \text{No reason to add more antennas/users?}\]
Taking Multi-User MIMO to a New Level

- **Network Architecture: Massive MIMO**
 - Use large arrays at BSs; e.g., $M \approx 200$ antennas, $K \approx 40$ users
 - Key: Excessive number of antennas, $M \gg K$
 - Very narrow beamforming
 - Little interference leakage

2013 IEEE Marconi Prize Paper Award

- Analysis based on asymptotics: $M \rightarrow \infty$
- Concept applicable at any M
What is the Key Difference from Today?

• Number of Antennas? **No, we already have many antennas!**
 • 3G/UMTS: 3 sectors x 20 element-arrays = 60 antennas
 • 4G/LTE-A: 4-MIMO x 60 = 240 antennas

Massive MIMO Characteristics

Active antennas: Many antenna ports

Coherent beamforming to tens of users

Typical vertical array:
10 antennas x 2 polarizations
Only 1-2 antenna ports

160 antenna elements, LuMaMi testbed, Lund University
Massive MIMO Deployment

• When to Deploy Massive MIMO?
 • The future will tell, but it can
 1. Improve wide-area coverage
 2. Handle super-dense scenarios

• Co-located Deployment
 • 1D, 2D, or 3D arrays

• Distributed Deployment
 • Remote radio heads
Basic Properties of

MASSIVE MIMO
Asymptotic Channel Orthogonality

- Example: Uplink with Isotropic/Rayleigh Fading
 - Two users, i.i.d. channels: \(\mathbf{h}_1, \mathbf{h}_2 \sim CN(\mathbf{0}, \mathbf{I}_M) \)
 - Signals: \(s_1, s_2 \) with power \(P \)
 - Noise: \(\mathbf{n} \sim CN(\mathbf{0}, \mathbf{I}_M) \)
 - Received: \(\mathbf{y} = \mathbf{h}_1 s_1 + \mathbf{h}_2 s_2 + \mathbf{n} \)

- Linear Processing for User 1: \(\hat{\mathbf{y}}_1 = \mathbf{w}_1^H \mathbf{y} = \mathbf{w}_1^H \mathbf{h}_1 s_1 + \mathbf{w}_1^H \mathbf{h}_2 s_2 + \mathbf{w}_1^H \mathbf{n} \)
 - Maximum ratio filter: \(\mathbf{w}_1 = \frac{1}{M} \mathbf{h}_1 \)
 - Signal remains: \(\mathbf{w}_1^H \mathbf{h}_1 = \frac{1}{M} ||\mathbf{h}_1||^2 \xrightarrow{M \to \infty} E[|h_{11}|^2] = 1 \)
 - Interference vanishes: \(\mathbf{w}_1^H \mathbf{h}_2 = \frac{1}{M} \mathbf{h}_1^H \mathbf{h}_2 \xrightarrow{M \to \infty} E[h_{11}^H h_{21}] = 0 \)
 - Noise vanishes: \(\mathbf{w}_1^H \mathbf{n} = \frac{1}{M} \mathbf{h}_1^H \mathbf{n} \xrightarrow{M \to \infty} E[h_{11}^H n_1] = 0 \)

Asymptotically noise/interference-free communication: \(\hat{\mathbf{y}}_1 \xrightarrow{M \to \infty} s_1 \)
Is this Result Limited to Isotropic Fading?

- Assumptions in i.i.d. Rayleigh Fading
 - No dominant directivity
 - Very many scattering objectives

 \[\text{Less true as } M \rightarrow \infty \]

- Example: Line-of-Sight Propagation
 - Uniform linear array
 - Random user angles
 - \(M \) observations:
 - Stronger signal
 - Suppressed noise
 - What is \(h_1^H h_2 \rightarrow ? \)

Main difference:
How quickly interference is suppressed
How will Practical Channels Behave?

- Measurements show similar results.

Asymptotic Favorable Propagation:

\[\frac{1}{M} \mathbf{h}_1^H \mathbf{h}_2 \to 0 \text{ as } M \to \infty \]

- Achieved in Rayleigh fading and line-of-sight – two extremes!
- Same behavior expected and seen in practice.

There are no experimentally validated massive MIMO channel models!

Spectral Efficiency

Only 10-20% lower than i.i.d. fading.

What can We Expect from MASSIVE MIMO?
Improving Spectral Efficiency by Massive MIMO

• Massive MIMO can Improve Spectral Efficiency
• Question: How large improvement can we expect? \((2x, 5x, 10x, \ldots?)\)

• Answers in My Recent Research

• Methodology
 1. Define a theoretical communication model (using practical properties)
 2. Formulate the question in mathematical terms
 3. Derive communication-theoretic performance expressions
 4. Obtain the answer by analytic results and numerical simulations
Transmission Protocol

- **Coherence Blocks**
 - Fixed channel responses
 - Coherence time: $T_c \text{ s}$
 - Coherence bandwidth: $W_c \text{ Hz}$
 - Depends on mobility and environment
 - Block length: $S = T_c W_c$ symbols
 - Typically: $S \in [100,10000]$

- **Time-Division Duplex (TDD)**
 - Switch between downlink and uplink on all frequencies
 - B symbols/block for uplink pilots – to estimate channel responses
 - $S - B$ symbols/block for uplink and/or downlink payload data
Hexagonal Cellular Network

- Classic Hexagonal Cellular System
 - Infinitely large set of cells (\mathcal{L})
 - M antennas at each BS
 - K active users in each cell

- Assumptions
 - Uniform user distribution in cells
 - Uncorrelated Rayleigh fading

Relative inter-cell interference

$$\mu_{jl}^{(1)} = \text{Average interference power from cell } l \text{ to cell } j$$

$$\mu_{jl}^{(2)} = \text{Second moment of same thing}$$

Every cell is “typical”
Problem Formulation

• Problem Formulation:

\[
\text{maximize } \frac{K}{B} \text{ total spectral efficiency } \quad [\text{bit/s/Hz/cell}]
\]

for a given \textit{M and S}.

• Main Issue: Hard to Find Tractable Expressions
 • Interference depends on user positions (in all cells!)
 • Prior works: Fixed pathloss values
 • We want reliable quantitative results – independent of user locations

• Proposed Solution: Make every user “typical”
 • Same signal power: Power control inversely proportional to pathloss
 • Inter-cell interference: Code over variations in user locations in other cells
Channel Acquisition

- Base Station Need Channel Responses to do Beamforming
 - Estimate using uplink pilot symbols
 - Only B pilot symbols available (pick $B \leq S$)
 - Must use same pilot symbols in different cells
 - Base stations cannot tell some users apart

- Called: Pilot Contamination
 - Recall: Noise and interference vanish as $M \to \infty$
 - Not interference between users with same pilot!

- Solution: Select how often pilots are reused
 - Pilot reuse factor $\beta \geq 1$
 - Users per cell: $K = \frac{B}{\beta}$
 - Higher β → Fewer users per cell, but interferers further away
Computing Spectral Efficiency

Theorem: Lower bound on spectral efficiency in cell j:

$$ SE_j = \sum_{k=1}^{K} \left(1 - \frac{B}{S} \right) \log_2 \left(1 + \frac{B}{I_{jk}} \right) $$

- **Interference term with maximum ratio (MR) processing:**

$$ I_{jk}^{\text{MR}} = \sum_{l \in \mathcal{L}} \sum_{m=1, m \neq (j,k)}^{K} \left(\mu_{jl}^{(2)} + \frac{\mu_{jl}^{(2)} - (\frac{\mu_{jl}^{(1)}}{M})^2}{M} \right) v_{i,lm}^{\Pi} v_{i,m}^{\Pi} + \left(\frac{\sum_{l \in \mathcal{L}} \mu_{jl}^{(1)} K}{M} + \frac{\sigma^2}{M \rho} \right) \left(\frac{\sum_{l \in \mathcal{L}} \sum_{m=1}^{K} \mu_{jl}^{(1)} v_{i,jk}^{\Pi} v_{i,\ell,m}^{\Pi} + \frac{\sigma^2}{\rho} }{1/(\text{Channel estimation quality})} \right) $$

Proof (outline):

1. **Compute the MMSE channel estimator for arbitrary pilots**
2. **Derive a lower bound on mutual information by treating interference as noise**
3. **Compute lower bound on average mutual information for random interferers**

Same thing for zero-forcing (ZF) processing: Cancel interference spatially
Numerical Results

• Problem Formulation:

\[
\begin{align*}
\text{maximize} & \quad K, \beta \\
\text{spectral efficiency} & \quad [\text{bit/s/Hz/cell}]
\end{align*}
\]

for a given \(M \) and \(S \).

• Use new closed-form spectral efficiency expressions
• Compute interference \(\mu_{jl}^{(1)} \) and \(\mu_{jl}^{(2)} \) between cells (a few minutes)
• Simply compute for different \(K \) and \(\beta \) and pick maximum (<1 minute)

Simulation Assumptions

- Uniform user distribution
- Pathloss exponent: 3.7
- Coherence block: \(S = 400 \)
- SNR 5 dB, Rayleigh fading
Anticipated Uplink Spectral Efficiency

Optimized Results

ZF slightly better than MR processing (and use smaller K)

Pilot reuse $\beta = 3$ is best

Observations

- Baseline: 2.25 bit/s/Hz/cell (IMT-Advanced)
- Massive MIMO, $M = 100$: x20 gain ($M/K \approx 6$)
- Massive MIMO, $M = 400$: x50 gain ($M/K \approx 9$)
- Per scheduled user: ≈ 2.5 bit/s/Hz
SUMMARY
Summary

• Wireless Communication is an Incredible Success Story
 • Usage has increased exponentially for a century!
 • This trend is expected to continue in the foreseeable future
 • Wireless networks must improve:
 More bandwidth, Higher cell density, More spectral efficiency

Main driving forces in the past Can be improved in the future!

• Massive MIMO: A technique to increase spectral efficiency
 • >20x gain over IMT-Advanced are foreseen
 • Base stations with many active antenna elements
 • High spectral efficiency per cell, not per user
 • Many potential deployment strategies
QUESTIONS?

Dr. Emil Björnson

Visit me online:
http://www.commsys.isy.liu.se/en/staff/emibj29