1. **Introductory lecture**

 The MUSIC algorithm:

 General textbooks:

 H. van Trees, Detection, estimation and modulation theory, Wiley. Especially volumes 1 and 4.

 P. Stoica and R. Moses, Spectral analysis of signals, Prentice-Hall

2. **Asymptotic analysis of estimators and detectors**

 Basic theory:

 L. Ljung, System Identification: Theory for the user.

 T. Söderström and P. Stoica, System Identification.

 Sections 6.5-6.6 of S. Kay, Fundamentals of Statistical Signal Processing, Part II: Detection Theory.

 Applications:

 Suggested structure and material to cover in the presentation:

 Present the basic methodology for asymptotic analysis of estimators. Prove that uniform convergence of the cost function onto a limiting cost function implies consistency (Stoica & Söderström textbook, exercise 7.15). Then give at least a heuristic derivation of the asymptotic covariance matrix. Exemplify with the applications source localization, and array processing. Finally, give a brief overview of asymptotic performance of detectors: recap what we know from the basic course (van Trees) and give the basic formulas for asymptotic performance of the GLRT.
3. **Conditional and unconditional maximum likelihood**

4. **MUSIC, Maximum Likelihood and CRB**

5. **Cramer-Rao bounds**

 The purpose of this lecture is to learn some techniques for finding CRBs. Three techniques will be covered:

 1) Constrained CRBs. Reading:

 2) Projector methods for finding neat proofs of CRBs. Reading:

 3) Concentrated CRBs (we will not discuss all proofs in detail):

 Also read this paper, but we will not discuss it in the lecture:

6. **Model order selection**

 The recommendation for this presentation is to recapitulate the Laplace approximation of the posterior log-likelihood that we did in the basic detection & estimation course (pages 60-64 here: http://www.commsys.isy.liu.se/DetEst2010/slides2010.pdf) Then from there, more on to more specific techniques.

 Reading:

7. **Covariance matching techniques**

Focus on this paper:

Further reading:

8. **Basic spectral estimation - 1**

Introduction: Definitions of PSD, the spectral estimation problem, broad classification of spectral estimation methods

Nonparametric methods: windowed periodograms and their analysis

TBD

9. **Basic spectral estimation - 2**

Introduction to parametric methods. Parametric methods for rational spectra

TBD

10. **Basic spectral estimation - 3**

Parametric methods for line spectra?
Data dependent filters (Capon, ...)?

TBD