Optimal Coordinated Beamforming in the Multicell Downlink with Transceiver Impairments

Emil Björnson, Per Zetterberg, and Mats Bengtsson

Signal Processing Lab, ACCESS Linneaus Centre, KTH Royal Institute of Technology, Stockholm, Sweden

Alcatel-Lucent Chair on Flexible Radio, Supélec, Gif-sur-Yvette, France
Introduction
Coordinated Beamforming

- Downlink Multicell Transmission
 - N Base Stations
 - K Users per Cell

- Universal Frequency Reuse
 - Common Narrowband Frequency Resource
 - Limiting Factor: Inter-User Interference

- N_t-Antenna Base Stations
 - Beamforming: Spatially Directed Signals
 - Lower Interference
Optimization of Beamforming

- Optimize System Utility
 - Many Possible Problem Formulations

- Two Main Categories of Optimization Problems

 - Convex Problems
 - Solvable in Practice (polynomial time)
 - Examples: Minimize power under rate constraints
 Maximize (weighted) worst-user rate

 - Non-Convex Problems
 - Infeasible in Practice (exponential time)
 - Approximations Necessary
 - Examples: Weighted sum rate, Proportional fairness

Focus in this Paper: Convex Problems

2012-12-05 Emil Björnson, Post-Doc at KTH and Supélec
Common Unrealistic Assumptions

• Unrealistic Assumptions Enable Analysis
 - Is Convexity Lost Otherwise?

• Assumption: Perfect Channel Knowledge
 - Impractical: Estimation errors, feedback quantization, delays
 - Treated by Robust Optimization (convexity remains)

• Assumption: Centralized Optimization
 - Impractical: Limited backhaul, local computational resources
 - Handled by Primal/Dual Decomposition (convexity remains)
Other Common Unrealistic Assumptions?

- **Ideal Hardware is Commonly Assumed**
 - Physical Transceivers Suffer From Impairments
 - Examples: Non-linear amplifiers, IQ imbalance, phase noise, carrier-frequency offset, quantization noise, etc.

- **Degrading Impact on Transmission and Reception**
 - Mismatch Between Ideal and Actual Signal
 - Distortion Power is Proportional to Signal Power
Transceiver Impairments
Transceiver Hardware Impairments

• Commonly Ignored in Beamforming Optimization
 - A Few Papers on Single-User Systems
 - Minor Impact on Single-User Low-Rate Transmission
 - Major Impact on
 1) High-rate transmission
 2) Inter-user interference
 3) Low-cost transceivers

• Exact Modeling
 - Separate distortion model of each component
 - Accurate but very hardware dependent

• Simplified Modeling
 - Combined distortion model of all components
 - Accurate for residual distortion after calibration

Focus in this Paper
Generalized System Model

- Parameters for User j in Cell i
 - Information Symbol: $x_{i,j} \sim \mathcal{CN}(0, 1)$
 - Linear Beamforming: $w_{i,j} \in \mathbb{C}^{N_t \times 1}$
 - Beamforming from Cell i: $W_i = [w_{i,1} \ldots w_{i,K}] \in \mathbb{C}^{N_t \times K}$
 - Channel from Cell m: $h_{m,i,j} \in \mathbb{C}^{N_t \times 1}$

- Received Signal at User j in Cell i
\[
y_{i,j} = \sum_{m=1}^{N} h_{m,i,j}^H \left(\sum_{k=1}^{K} w_{m,k}x_{m,k} + z_{m}^{(t)} \right) + z_{i,j}^{(r)}
\]

Transmitter distortion Receiver distortion

2012-12-05
Emil Björnson, Post-Doc at KTH and Supélec
Characterization: Receiver Distortion

- Well-Modeled as Complex Gaussian: \(z_{i,j}^{(r)} \sim \mathcal{CN}(0, \sigma_{i,j}^2) \)
 - Aggregation of Many Impairments
 - Previously Verified by Measurements and Analysis

Example: \(\kappa_3 \): Ratio of distortion to signal in percentage \((0 \leq \kappa_3 \leq 15)\)
- Smaller is Better

Received signal magnitude

\[
\sigma_{i,j}^2 = \sigma^2 + \nu^2 \left(\sum_{m=1}^{N} \| h_{m,i,j}^H W_m \|_F^2 \right)
\]

Increasing convex function

\[
\nu(x) = \frac{\kappa_3}{100} x
\]
Characterization: Transmitter Distortion

- Also Well-Modeled as Gaussian: \(z_m^{(t)} \sim \mathcal{CN}(0, C_m) \)
 - Linear with signal at low power
 - Faster than linear at high power

\[
C_m = \begin{bmatrix}
 c_{m,1}^2 \\
 \vdots \\
 c_{m,N_t}^2
\end{bmatrix}, \quad c_{m,n} = \eta\left(\|T_n W_m\|_F\right)
\]

- Example: \(\eta(x) = \frac{\kappa_1}{100} x \left(1 + \left(\frac{x}{\kappa_2}\right)^4\right) \)
 - \(\kappa_1 \): Base-level of distortion \((0 \leq \kappa_1 \leq 15)\)
 - \(\kappa_2 \): Dynamic range of power amplifier \((5^{th} \text{ order non-lin})\)
Optimization of Coordinated Beamforming
SINR ExpressionS

- Signal-to-interference-and-noise ratio of User j in Cell i:

$$\text{SINR}_{i,j} = \frac{\left| h_{i,i,j}^H w_{i,j} \right|^2}{\sum_{l \neq j} |h_{i,i,j}^H w_{i,l}|^2 + \sum_{m \neq i} \| h_{m,i,j}^H W_m \|_F^2 + \sum_{m,n} (h_{m,i,j}^H T_n h_{m,i,j}) t_{m,n}^2 + r_{i,j}^2 + \sigma^2}$$

Useful signal

- Intra-cell interference
- Inter-cell interference
- Transmitter distortion
- Receiver distortion

- Extra variables:
 $$\eta(\| T_n W_m \|_F) \leq t_{m,n} \quad \forall m, n$$
 $$\nu\left(\sqrt{\sum_{m} \| h_{m,i,j}^H W_m \|_F^2}\right) \leq r_{i,j} \quad \forall i, j$$

- Should be equality
- If $t_{m,n}, r_{i,j}$ are seen as variables: Equality in optimal solution
Convexity is Retained

• Minimize Power under SINR Constraints: $\text{SINR}_{i,j} \geq \gamma_{i,j}$

• Theorem: Solvable as Convex Optimization Problem

$$\begin{align*}
\text{minimize} & \quad \beta, \mathbf{W}_i, t_{i,n}, r_{i,j}, \forall i, j, n \\
\text{subject to} & \quad t_{i,n} \geq 0, \quad r_{i,j} \geq 0, \quad \Re(h_{i,i,j}^H \mathbf{w}_{i,j}) = 0 \quad \forall i, j, n, \\
& \quad \text{tr}(\mathbf{W}_i^H \mathbf{Q}_{i,k} \mathbf{W}_i) + \sum_n \text{tr}(\delta \mathbf{Q}_{i,k} \mathbf{T}_n) t_{i,n}^2 \leq \beta q_{i,k} \quad \forall i, k, \\
& \quad \sqrt{\sum_m \|h_{m,i,j}^H \mathbf{W}_m\|_F^2 + \sum_{m,n} (h_{m,i,j}^H \mathbf{T}_n h_{m,i,j}) t_{m,n}^2 + r_{i,j}^2 + \sigma^2} \leq \sqrt{1 + \frac{1}{\gamma_{i,j}}} \Re(h_{i,i,j}^H \mathbf{w}_{i,j}) \quad \forall i, j, \\
& \quad \eta(\|\mathbf{T}_n \mathbf{W}_m\|_F) \leq t_{m,n} \quad \forall m, n, \\
& \quad \nu(\sqrt{\sum_m \|h_{m,i,j}^H \mathbf{W}_m\|_F^2}) \leq r_{i,j} \quad \forall i, j.
\end{align*}$$

Main Point: Convexity is Retained Under Transceiver Impairments
Generalization of Optimization Problems

- (P1): Minimize Power under SINR/Rate Constraints
 - Convex Optimization Problem

- (P2): Maximize Worst-User Rate
 - Solved as Sequence of (P1)-Problems
 - (Quasi-)Convex Optimization Problem
Numerical Examples
Simulation Scenario

- Maximize Worst-User Rate (Max-Min Fairness)

- Two Schemes:
 - Optimal Beamforming with Transceiver Impairments
 - Distortion-Ignoring Optimized Beamforming

- Simulation Scenario
 - 2 Base Stations
 - 3GPP LTE Case 1
Average Max-Min User Rate

• Parameters
 - $N_t = 4$ antennas/BS, $K = 2$ users/cell
 - X-axis: $\kappa_1 = \kappa_3 = \text{EVM in } \% \text{ at transmitter/receiver}$

Conclusion: Smaller loss when optimized for impairments
Impact on Multiplexing Gain

- Parameters
 - $N_t = 8$ antennas/BS, $K = 4$ users/cell
 - X-axis: Transmit Power

Conclusion: Finite High-SNR Limit (No multiplexing gain)
Summary
Summary

• Transceiver Impairments
 - Physical Transceivers are Not Perfect
 - Small Impact in the Past
 - Major Impact in the Future: High spectral efficiency
 Small inter-user interference

• Contributions
 - Tractable Mathematical Formulation
 - Minimize Power under SINR Constraints – Convex Problem
 - Maximize Worst-User Rate – Convex Problem

• Observations
 - Optimization Makes Degradations Much Smaller
 - Finite High-SNR Limit – No Multiplexing Gain
Additional Work

• Extension to General Multi-Cell Scenarios

• Analysis of Finite High-SNR Limit
 - Multiplexing is Very Useful – Although Multiplexing Gain is 0
Thank You for Listening!

Questions?

All Papers Available:
http://flexible-radio.com/emil-bjornson
Power Constraints

- Arbitrary Power Constraints in Cell i
 - Constraints:
 \[
 \text{tr}(W_i^H Q_{i,k} W_i) + \sum_n \text{tr}(\delta Q_{i,k} T_n) t_{i,n}^2 \le q_{i,k} \quad \forall i, k,
 \]
 Positive semi-definite shape matrix Positive limit

- $0 \le \delta \le 1$ defines the extra power consumed by distortions

- Examples: Per-antenna constraints
 Per-cell constraints
 Soft-shaping constraints