Emil Björnson, Mats Bengtsson, Björn Ottersten

KTH Royal Institute of Technology
ACCESS Linnaeus Center
Stockholm, Sweden

Optimality Properties and Low-Complexity Solutions to Coordinated Multicell Transmission
Outline

• Introduction: Multicell Transmission

• How to measure performance?
 - Weighted sum performance
 - Simplified convex problem

• Common Optimality Properties
 - Power allocation and beamforming structure

• Low-Complexity Solution
 - Approximation suitable for distributed precoding
 - Evaluated on measured multicell channels
Intro: No Coordination

- Non-Cooperative Multicell Downlink
 - Conventional single cell processing
 - Interference at cell edge users uncontrollable
 - Can be improved by coordinating interference
Intro: Full Coordination

• Centralized Cooperative Multicell Downlink
 - Backhaul network and central station (CS)
 - Centralized processing as “one cell”
 - Impractical?
Intro: Dynamic Clusters

- Practical Coordination Structure
 - C_k = Coordinate interference to terminals
 - D_k = Data transmission to terminals
 - Limits sharing of data and channel knowledge (full/no coordination are special cases)
System Model

• Assumptions
 - K_t base stations with N_t antennas
 - K_r single-antenna user terminal
 - Channel from all BSs to MS$_k$: $\mathbf{h}_k = \begin{bmatrix} h_{1k} \\ \vdots \\ h_{K_t k} \end{bmatrix}$
 - BS$_j$ knows h_{jk} for $k \in C_j$

• Data Transmission
 - Signal vector to MS$_k$: \mathbf{s}_k
 - Received signal: $y_k = h_k^H \mathbf{c}_k \sum_{\bar{k}=1}^{K_r} \mathbf{D}_{\bar{k}} \mathbf{s}_{\bar{k}} + n_k$
 - Sorts out signals from coordinating BSs
 - Sorts out transmit antennas
 - Noise and distant interference
System Model (2)

- Transmission Strategies
 - Signal correlation matrix: \(S_k = \mathbb{E}\{s_k s_k^H\} \)
 - Arbitrary rank

- Power Constraints
 - Per base station: \(\sum_{k \in \mathcal{D}_j} \text{tr}\{D_{jk} S_k D_{jk}^H\} \leq P_j \)
 Sorts out antennas of BS\(_j\)
 - Models hardware, regulations, economy, etc.
 - Extension to arbitrary constraints: [Björnson2011]
How to Measure Performance?

- **User Performance Measure:** R_k
 - Increasing function of SINRs (depend on $S_k = \mathbb{E}\{s_k s_k^H\}$)
 - E.g., data rate, bit error rate, MSE, etc.

- **System Performance:** Weighted Sum
 maximize $\mu_1 R_1 + \mu_2 R_2 + ...$
 $s_1, s_2, ...$
 - Finds Pareto optimal points
 - Fairness depends on $\mu_1, \mu_2, ...$
(P1): Weighted Sum Maximization

• Optimization Problem

\[
\begin{align*}
\text{maximize} & \quad \sum_{k=1}^{K_r} \mu_k R_k(S_1, \ldots, S_{K_r}, \sigma_k^2) \\
\text{subject to} & \quad \sum_{\tilde{k} \in D_j} \text{tr}\{D_{j\tilde{k}} S_{\tilde{k}} D_{j\tilde{k}}^H\} \leq P_j \quad \forall j \\
& \quad S_k \succeq 0 \quad \forall k.
\end{align*}
\]

• Difficult Problem
- Non-convex and NP-hard
- Find structure of the optimal solution?
(P2): Quality of Service Constraints

- Given Performance/QoS Point \((\gamma_1, \ldots, \gamma_{Kr})\)
 - Find strategy: \(R_k \geq \gamma_k, \forall k\)

- What to Optimize?
 - Minimize power? \(\Rightarrow\) Solution may use too much power!
 - Instead: Best possible under power constraints

- Solution: Optimize worst noise \(\alpha^2 \sigma_k^2\) that can be handled
 - \(\alpha\)-parameter: Constraints \(R_k \geq \gamma_k\) satisfied if \(\alpha \geq 1\)

\[
\begin{align*}
\text{(P2):} & \quad \max_{S_1, \ldots, S_{Kr}, \alpha} \quad \alpha \\
\text{subject to} & \quad R_k(S_1, \ldots, S_{Kr}, \alpha^2 \sigma_k^2) \geq \gamma_k, \forall k, \\
& \quad S_k \succeq 0, \quad \sum_{k \in D_j} \text{tr}\{D_{jk} S_k D_{jk}^H\} \leq P_j, \forall j,k.
\end{align*}
\]
Connection: (P1) and (P2)

- (P2) solves “half” the original problem!

- Price for convexity
 - Need to know optimal user QoS!

- (P1) and (P2): Common Properties
 - Equal if optimal performance of (P1) are constraints in (P2)
 - Properties of (P2) that holds for any \((\gamma_1, \ldots, \gamma_{K_T}) \)
 - These also holds for (P1)!
Optimality Property 1

Exists optimal solutions with

1. Full power usage (if $|C_k| \leq N_t$)
2. Single-stream beamforming (i.e., $S_k = w_k w_k^H$)

• Intuitive Results – Non-trivial Proofs
 - Insufficient antennas: Power should be limited
 - Multi-stream solutions exists in special cases

• Allows Simplifications
 - Use total power at all transmitters
 - No SIC-receivers or vector coding required
Optimality Property 2

Uplink-downlink duality for (P2)
- Based on Lagrange duality theory
- Transmit beamformers ⇔ Receive filters

• Motivation
- Easier to solve uplink problems
Beamforming Parametrization
- Optimal strategies \(S_k = w_k w_k^H \) satisfy

\[
 w_k = c_k \left(\sum_j a_j D_{j,k} + \sum_{\bar{k} \neq k} b_{\bar{k}} D_{\bar{k}}^H C_{\bar{k}}^H h_{\bar{k}} h_{\bar{k}}^H C_{\bar{k}} D_{\bar{k}} \right)^{-1} D_{\bar{k}}^H h_{\bar{k}}
\]

for some parameters \(a_j, b_{\bar{k}} \in [0, 1] \).

- **Optimal Strategies**
 - Depends on \(K_i + K_r \) parameters
 - Power allocation \(c_k \) also function of these

- **New Approach: Find Good Parameters**
 - Iterative search
 - Heuristic selection – Easy to find good ones!
Simple Distributed Strategy

• Motivation: Centralized Solutions Require
 - Much backhaul signaling (CSI, data, sync)
 - High Computational Resources

• Distributed Low-Complexity Solution:
 - Select parameters a_j, b_k in Property 3 heuristically
 - Calculate independently on each BS

• Result
 - Distributed Virtual SINR (DVSINR) Beamforming
 - Tailored for weighted sum performance
Measurement-Based Evaluation

- Multicell Channel Measurements
 - Realistic urban scenario in Stockholm
 - Correlation between BSs (usually ignored)
 - Two sectorized 4-antenna BSs

BS: Rooftops
MS: Street level
(4 users)
Measurement-Based Evaluation (2)

• Weighted Sum Rate
 - Data rate: \(R_k(\cdot) = \log_2(1 + \text{SINR}_k) \)
 - Proportional fairness

• Precoding Schemes
 1. Optimal Precoding
 2. Modified Optimal Precoding: \(|\sum_j \text{inter.}_j|^2 \rightarrow \sum_j |\text{inter.}_j|^2 \)
 (No interference cancellation between BSs)
 3. DVSINR – Multicell (data from both BSs)
 4. DVSINR – Single-cell (date from one BS)
 5. Single-cell processing
• **Average Weighted Sum Rate**
 - Large gain with interference coordination
 - Small gain with joint data: Both DVSINR approaches good

![Graph showing Average Weighted Sum Rate vs. Output Power per subcarrier and BS (dBm)](image)

Gap:
- Interference Cancellation between BS
- Unreasonable In Practice!

Single-cell processing:
- Bounded performance
Measurement-Based Evaluation (4)

• Average User Rates
 - Large improvements for cell edge terminals
 - Not all terminals benefit from multicell coordination

![Graph showing average user rates vs. output power per carrier and BS in dBm]
Summary

• Interference Limits Multicell Performance
 - Managed by multicell coordination

• Optimization: Weighted Sum Performance
 - Full power usage and single-stream beamforming
 - Simple parametrization of optimal beamforming

• Distributed Approximation: DVSINR
 - Heuristic use of parameterization

• Measurement-based Multicell Evaluation
 - Interference coordination greatly improves performance
 - Important measurement observations:
 • Not all terminals benefit from multicell coordination
 • Small practical benefit with joint data transmission
References

• Journal version
 - Includes multicarrier and arbitrary power constraints

• Previous work

Thank You for Listening!

Questions?

Papers and Presentations Available:
http://www.ee.kth.se/~emilbjo