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Overview

ÅNarrowband Communication

Á Downlink communication from base station

Á One or several receiving users

Á Multiple antennas at both sides

Á Block fading environment
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Overview (2)

ÅChannel State Information (CSI)

Á Channel between transmit and receive antennas

Á Complex coefficient (describes gain and phase shift)

ÅInstantaneous CSI

Á Current values of coefficients

Á Needs to be estimated and used with short delay

ÅStatistical CSI

Á How are the coefficient correlated?

Á Can be estimated slowly with a long time window

Á Assumed to be known perfectly at both sides
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Overview (3)

ÅSystem Operation (Block Fading):

ÅPerfect Channel Estimation at Receiver

Á Often assumed when focus is on transmission design

ÅInstantaneous Channel Information useful:

Á Receive processing (Interference suppression, detection)

Á Feedback (User selection, precoding, rate adaptation)
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Outline

ÅSystem Model

ÅChannel Matrix Estimation
Á MMSE Estimator and Training Design

ÅLength of Training Sequence

ÅChannel Norm Estimation
Á MMSE Estimator and Training Design

ÅNumerical Examples

ÅSummary and References
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System Model

ÅMIMO Communication:

Á transmit antennas,      receive antennas

ÅCommunication model to user   : 

Á transmitted signal,            received signal

Á potentially correlated complex Gaussian noise

Á Rician distributed channel matrix:
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System Model (2)

ÅProblem description :

Á Estimate properties of the channel matrix

Á In general, we are interested in some function
(receiver structure, modulation, precoding)

ÅIn this work we estimate two parameters

Á channel matrix (many applications)

Á channel gain (for user -selection, rate adaptation)

Á It will be illustrated that calculation of             from
an estimation of        gives poor performance



82009 -02 -11

Björnson, Ottersten

System Model (3)

ÅTraining -based channel estimation

Á Training sequence of length
(maximal length if no per -symbol power constraint)

Á Represented by matrix                          

Á Training power constraint:

Á Transmission of       over       symbol slots:

Á General disturbance statistics:
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Kronecker Product

ÅDefinition:

ÅUseful to analyze matrix multiplication:

Á Training matrix      multiplied from the right:

Á To analyze impact of       we will later assume 
Kronecker -structured channel properties and use that
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Channel Matrix Estimation

ÅMMSE Estimation of      in a unified way

We consider Rician fading and Rician disturbance

Linear MMSE estimators have previously been derived :

Á Rayleigh fading, uncolored noise: J. Kotecha and A. Sayeed , 
ñTransmit signal design for optimal estimation of correlated MIMO 
channels ,ò 2004.

Á Rayleigh fading, colored noise: Y. Liu, T. Wong, and W. Hager, 
ñTraining signal design for estimation of correlated MIMO channels 
with colored interference ,ò 2007.

Has also been done in the wrong way (suboptimally ):

Á Rayleigh fading, uncolored noise: M. Biguesh and A. 
Gershman , ñTraining -based MIMO channel estimation: a study of 
estimator tradeoffs and optimal training signals ,ò 2006.

Á Rayleigh fading, colored noise:  D. Katselis , E. Kofidis , and S. 
Theodoridis , ñTraining -based estimation of correlated MIMO fading 
channels in the presence of colored interference ,ò 2007.

General linear estimator

Suboptimal estimator
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Channel Matrix Estimation (2)

ÅMMSE Estimator:

where

Á Linear/Affine (also LMMSE for non -Gaussian systems)

Á Mean values do not affect the MSE

Á Training matrix is clearly affecting the MSE
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Channel Matrix Estimation (3)

ÅMSE minimizing training sequence design

Á Training for multiple users: 

Á Training for single user:

ÅAdapt training to channel and disturbance statistics

ÅMore training power in eigenmodes with strong SINRs

Á Kronecker separability necessary for analysis: (dropped indices)

Transmit side Receive side Temporal Receive side
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Channel Matrix Estimation (4)

ÅEigenvalue decompositions:

Á Opposite ordering of eigenvalues

ÅConclusions from training optimization:

Á Matrix structure:

Eigenvectors from transmit channel and temporal 

covariance (     and     ), in opposite order of dominance.

Conclusion : Separation in      virtual channels with SINRs

where large         assigned to small
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Channel Matrix Estimation (5)

ÅAdditional conclusions:

Á MSE with optimal training is Schur -concave in transmit 

channel covariance eigenvalues.

Conclusion : It is good to have a spread of eigenvalues, 

since spatial correlation improves estimation.

Á Asymptotics : 

Low SINR: All power in strongest eigenmode
High SINR: Proportional to noise standard deviation
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Channel Matrix Estimation (6)

ÅMathematical tools used in the proofs

ÅMSE is a convex function (w.r.t . training powers )

ÁMajorization theory

ÅTraining matrix based on channel / disturbance eigenvectors

ÅStrong channel eigenvalues allocated to weak disturbance

ÅSpatial correlation improves estimation performance

ÁConvex optimization

ÅAsymptotic optimal training , high/ low SINR

ÅExplicit optimal solutions in certain cases (next slide )
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Channel Matrix Estimation (7)

ÅTraining powers explicitly in certain cases

Á Identity as transmit channel and temporal covariance:

Result: Equal power allocation: 

Á Identical receive covariance for channel and disturbance:

Result: Convex optimization problem

Gives good numerical results also for general covariance
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Length of training sequence

ÅWaterfilling of training powers

Á For low training power     and/or large eigenvalue spread, 
some training powers will become zero.

Á In the previous case,      is full rank if

and otherwise have rank               where 
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Length of training sequence (2)

ÅIf

Á is the maximal necessary training sequence length

(only approximately if disturbance contains information)

ÅExample: 8 Transmit 
Antennas

Uncorrelated 
Receivers

White
Disturbance

Exponential
Correlation 

Model
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Length of training sequence (3)

Å Conclusion : 

Á The optimal number of training symbols can be 
smaller than the number of transmit antennas
(in spatially correlated systems, limited power)

How is this related to:

òWhen the training and data powers are allowed to vary, 

we show that the optimal number of training symbols is 
equal to the number of transmit antennasò

B. Hassibi and B. Hochwald , ñHow much training is 
needed in multiple -antenna wireless links? ,ò 2003.

Á Their result is shown for uncorrelated systems, but
the result have been cited for other applications !
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Channel Norm Estimation

ÅMMSE Estimation of          in similar way

Á Considerably more difficult to analyze

Á We limit ourself to zero -mean Kronecker channels

Á No previous results in the area, by our knowledge

ÅConjecture: Structure of training matrix

Á Same structure as in the channel matrix estimation

Á Makes it possible to estimate           as a sum of 
independent variables.



212009 -02 -11

Björnson, Ottersten

Channel Norm Estimation (2)

ÅMMSE estimator of               and MSE:
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Channel Norm Estimation (3)

ÅTraining sequence design

Á More difficult to solve since the MSE is not convex

ÅTwo approaches:

Á Small set of potential explicit solutions can be derived
(in the case of                , otherwise approximately)

Á An additional constraint can make the problem convex

ÅAsymptotic results:

Á Low SINR: All power allocated to strongest eigenmode

Á High SINR: Proportional distribution to standard deviation 
of channel and disturbance eigenmodes

(different from the channel matrix case)
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Numerical Examples

ÅNumerical illustrations of performance

Á MMSE estimators compared with other estimators

Á Uniform training compared with optimal training

ÅSystem parameters

Á Kronecker -structure of covariance matrices

Á Uncolored disturbance (noise - limited system)

Á Transmit and receive channel covariance modeled with 
exponential model (model of a Uniform Linear Array)
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Numerical Examples (2)

8 Transmit 
Antennas

4 Receive
Antennas

Correlation 
Parameter: 0.8

ÅChannel Matrix Estimation 

Á Comparison of four different estimators, optimal training

Á Normalized MSE: 
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Numerical Examples (3)

8 Transmit 
Antennas

4 Receive
Antennas

Correlation 
Parameter: 0.8

ÅChannel Matrix Estimation 

Á Comparison of different training sequences

Á Normalized MSE: 
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Numerical Examples (4)

ÅChannel Squared Norm Estimation 

Á Comparison of MMSE and indirect estimation

Á Normalized MSE: 

8 Transmit 
Antennas

(corr : 0.8)

4 Receive
Antennas
(corr : 0)


