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Overview

A Narrowband Communication

A Downlink communication from base station

r

A One or several receiving users

r

Qg@% A Multiple antennas at both sides
FKTHE

S A Block fading environment
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Overview (2)

A Channel State Information (CSI)

A Channel between transmit and receive antennas

A Complex coefficient (describes gain and phase shift)
N
d@:k? A Instantaneous CSI
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Do, i A Current values of coefficients

OF TECHNOLOGY A Needs to be estimated and used with short delay

A Statistical CSI

A How are the coefficient correlated?
A Can be estimated slowly with a long time window

A Assumed to be known perfectly at both sides



Overview (3)

A System Operation (Block Fading):

@annel Estimati@—»@mited FeedbacD—>GJser Selection/Precoder DesigD—l
Cl'raining Signallina ——————————————————— —@ata TransmissioD
Outdated CSI
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wremooer A Parfect Channel Estimation at Receiver

A Often assumed when focus is on transmission design

A Instantaneous Channel Information useful:

A Receive processing (Interference suppression, detection)

A Feedback (User selection, precoding, rate adaptation)



Outline
A System Model

A Channel Matrix Estimation
A MMSE Estimator and Training Design

A Length of Training Sequence

wmmwerwe A Channel Norm Estimation
A MMSE Estimator and Training Design

A Numerical Examples

A Summary and References
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System Model

A MIMO Communication:

A np transmit antennas, npeive antennas

A Communication model to user : k
t) = H. - x(t n(t
yi(t) k (t) +ng(t)
npX1 npXny nrxXl npxl

A x(t) transmitted signal,  y (¢ )zived signal
A nk(t) potentially correlated complex Gaussian noise

A Rician distributed channel matrix:

vec(H;) € CN(vec(H:),Ry)
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System Model (2)

A Problem description

A Estimate properties of the channel matrix H L

A In general, we are interested in some function f(Hg)
(receiver structure, modulation, precoding)

A Inthis work we estimate two parameters
A Hk channel matrix (many applications)

A ||Hk||% channel gain (for user  -selection, rate adaptation)

A It will be illustrated that calculation of ||Hpl||% from
an estimation of Hk;ives poor performance



System Model (3)

A Training -based channel estimation

A Training sequence of length  np
(maximal length if no per -symbol power constraint)

A Represented by matrix P, € C"T*"T
A Training power constraint: tr(PEPk) =P

A Transmission of Pper  <;mpbol slots:

Y, = HiP, + N
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Y. = [ye(1),....,ye(np)], Ny = [ng(1),...,n(ny)]

A General disturbance statistics:

vec(N.) € CN(vec(Nz),Sz)




Kronecker Product

A Definition: "a11B ... a1,B
AR B = s

_amlB st amnB_

A Useful to analyze matrix multiplication:
vec(CH,D) = (D! @ C) vec(H,,)
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OF TECHNOLOGY A Training matrix P gltiplied from the right:

vec(H,Py) = (PL ®I) vec(Hy,)

A To analyze impact of P will later assume
Kronecker -structured channel properties and use that

(A ®B)(E®F) = (AE @ BF)



Bjornson, Ottersten

Channel Matrix Estimation

A MMSE Estimation of Hyna unified way
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General linear estimator
Bvec(Y})
Suboptimal estimator
Y. A &

(AT @ T)vec(Y})

2009 -02-11

We consider Rician fading and Rician disturbance

Linear MMSE estimators have previously been derived :

A Rayleigh fading, uncolored noise: J. Kotecha and A. Sayeed,
ATransmit signal design for optimal estimation of correlated MIMO
channels, 06 2004.

A Rayleigh fading, colored noise: Y. Liu, T. Wong, and W. Hager,
ATraining signal design for estimation of correlated MIMO channels
with colored interference  , 0 200 7.

Has also been done inthe wrong way (suboptimally ):

A Rayleigh fading, uncolored noise: M. Biguesh and A.
Gershman , Training -based MIMO channel estimation: a study of
estimator tradeoffs and optimal training signals , 0 2006.

A Rayleigh fading, colored noise: D. Katselis , E. Kofidis , and S.
Theodoridis , Training -based estimation of correlated MIMO fading
channels in the presence of colored interference , 0 2007.
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Channel Matrix Estimation (2)

A MMSE Estimator:
vec(Hymsg) =
vec(Fy) + R, Py (PrR,P{ + Sk)_l
X (vec(Yk) — Pyvec(H,) — vec(Nk))

—— ~ ~ \—1
AL MSE = tr {(Rgl + Py S;ZlPk) }
where f’k = (P%@ I)

A Linear/Affine (also LMMSE for non - Gaussian systems)
A Mean values do not affect the MSE

A Training matrix is clearly affecting the MSE
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Channel Matrix Estimation (3)
A MSE minimizing training sequence design
min tr{(R + PLe DS 1(PTw I))_l}

subject to  tr(P{P;) =P

A Training for multiple users: P, = /P/nrl

A Training for single user:

A Adapt training to channel and disturbance statistics
A More training power in eigenmodes with strong SINRs

A Kronecker separability necessary for analysis: (dropped indices)

R:[R%|®|RR| S =|S4|®Sk

Transmit side Receive side Temporal Receive side




Channel Matrix Estimation (4)

A Eigenvalue decompositions:
Ry = Updiag\D, ... AUl
S =Vr diag(agT), : (T))VT

A Opposite ordering of eigenvalues

A Conclusions from training optimization:
A Matrix structure: P = Updiag(\/p1,.. ., 4 /pnT)VJIg

Eigenvectors from transmit channel and temporal
covariance ( Rynd )Spi opposite order of dominance.
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Conclusion : Separation in  n7tual channels with SINRs

pj/\(-T) /a(.T) where large )\(T) ssigned to small U§T)




Channel Matrix Estimation (5)

A Additional conclusions:

A MSE with optimal training is Schur -concave in transmit
channel covariance eigenvalues.

ﬁ@% Conclusion : It is good to have a spread of eigenvalues,

FKTHS since spatial correlation improves estimation.
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A Asymptotics
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Low SINR: All power in strongest eigenmode
High SINR: Proportional to noise standard deviation

P = UTdiag(\/pla I \/pTLT)V’_ZIi



Channel Matrix Estimation (6)

A Mathematical tools used inthe proofs

A MSE is a convex function (w.r.t . training powers )

Qg@% A Majorization theory
FKTHY

S e A Training matrix based on channel /disturbance eigenvectors
) 9 . .
"EEXES® A Strong channel eigenvalues allocated to weak disturbance
PRl AR A Spatial correlation improves estimation performance

A Convex optimization

A Asymptotic optimal training , high/ low SINR
A Explicit optimal solutions in certain cases (next slide)
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Channel Matrix Estimation (7)

A Training powers explicitly in certain cases
A Identity as transmit channel and temporal covariance:
Ryr=Sp =1
Result; Equal power allocation: pj = P/nr Vj

A Identical receive covariance for channel and disturbance:
RR — SR

Result: Convex optimization problem

A1) (D)
p; = max S 9T ,0 o Lagrange multiplier
o )\§ )

Gives good numerical results also for general covariance



Length of training sequence

A Waterfilling of training powers

A For low training power  aPi/or large eigenvalue spread,
some training powers will become zero.

A Inthe previous case, iPfull rank if

ROYAL INSTITUTE j=1
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and otherwise have rank m < nre




Length of training sequence (2)
Alf rank(P) = m < np

A ™ is the maximal necessary training sequence length

; (only approximately if disturbance contains information)
FRTH
1 KTH & A Example: 8 Transmit
X s e ; | | | [ Antennas
HOYAL INSTITUTE % 8 o= 0=0.2 ja=0.4 0=0.6 0=0.8
OF TECHNOLOGY 2 7f 1 Uncorrelated
1] .
D sl Recelvers
S o) i a{s o :
g 5) .
= O 0 + ¢ + White
2 4r Disturbance
g;. 0] 0 T ¢ +
Q 3 i
3, T + ¢ + | Exponential
§ ¢ + Correlation
1 ' | | 2 Model

|
-5 0 5 10 15 20

_ Total Training SINR (dB) -



Length of training sequence (3)

A Conclusion :

A The optimal number of training symbols can be
smaller than the number oftransmit antennas
(in spatially correlated systems, limited power)

&

A Y
E(FKTH

VETENSKAP

Sg o0 oms ¢ How is this related to:
SN
COYAL INSTITUTE oWhen the training and data powers are allowed to vary,
OF TECHNOLOGY we show that the optimal number of training symbols is

equal to the number of transmit an

B. Hassibi and B. Hochwald , Héw much training is
needed in multiple -antenna wirelesslinks? , 6 200 3.

A Their result is shown for uncorrelated systems, but
the result have been cited for other applications !
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Channel Norm Estimation

A MMSE Estimation of ||H||% in similar way
A Considerably more difficult to analyze
A We limit ourself to zero-mean Kronecker channels

A No previous results inthe area, by our knowledge

A Conjecture: Structure of training matrix

P = UTdiag(\/pla O \/pnT)VfZE

A Same structure asinthe channel matrix estimation

A Makes it possible to estimate ||H||%sum of
Independent variables.



Channel Norm Estimation (2)
A MMSE estimator of p = ||H||% MSE:

mvse = 17BX1 + vy DB?Dy

N

E{|p — pmmsel’} = 1" B (%2 + 2DXAD) Bl

PRGOS where
y = vec(UZYVII),
B = A(DAD + X) 1,
D = (diag(\/p1,---,+/Pny) @ 1),
A=A7r® Ap,
> = (2,107 @ (SR,
1=11,...,1]%.



Channel Norm Estimation (3)

A Training sequence design

A More difficult to solve since the MSE is not convex

e, A Two approaches:
FKTHE A Small set of potential explicit solutions can be derived

VETENSKAP

Sy ounkons o (inthe case of R p = Sp2rwise approximately)

ROYAL INSTITUTE A An additional constraint can make the problem convex

OF TECHNOLOGY

A Asymptotic results:

A Low SINR: All power allocated to strongest eigenmode

A High SINR: Proportional distribution to standard deviation
of channel and disturbance eigenmodes
(different from the channel matrix case)



Numerical Examples

A Numerical illustrations of performance

A MMSE estimators compared with other estimators

A Uniform training compared with optimal training

&
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FKTHS
LWl A System parameters
'OF TECHNOLOGY A Kronecker -structure of covariance matrices
A Uncolored disturbance (noise  -limited system)

A Transmit and receive channel covariance modeled with
exponential model (model of a Uniform Linear Array)



Numerical Examples (2)

A Channel Matrix Estimation
A Comparison of four different estimators, optimal training
A Normalized MSE: E{|H — ﬁMMSEH%}/tr(R)
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8 Transmit
Antennas

Normalized MSE

_ e ML/MVU, optimal
4 Recelve 10 | - = = Two-sided linear, optimal

Antennas [ One-sided linear, optimal
| —&— MMSE/MAP, optimal
. 1 | |
Correlation _5 0 5 10 15 20
Parameter: 0.8 Total Training SINR (dB)



Numerical Examples (3)

A Channel Matrix Estimation

A Comparison of different training sequences
A Normalized MSE: E{|H — ﬁMMSEH%}/tr(R)
ﬁ@% 10° | . . . .
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8 Transmit N
(40}
Antennas £
o
_ < .|| = = = MMSE/MAP, uniform
4 Recelve 10 | One-sided linear, optimal
Antennas | - —+— MMSE/MAP, approx.opt
| —&— MMSE/MAP, num.opt
. 1 | |
Correlation _5 0 5 10 15 20
Parameter: 0.8 Total Training SINR (dB)



Numerical Examples (4)

A Channel Squared Norm Estimation
A Comparison of MMSE and indirect estimation
A Normalized MSE:
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8 Transmit
Antennas
(corr: 0.8)

4 Receive

Antennas
(corr: 0)



