A Unified Framework for Training-Based Channel Matrix and Norm Estimation in MIMO Systems

Emil Björnson and Björn Ottersten
ACCESS Linnaeus Center, Signal Processing
Royal Institute of Technology (KTH)
Stockholm, Sweden
Overview

- Narrowband Communication
 - Downlink communication from base station
 - One or several receiving users
 - Multiple antennas at both sides
 - Block fading environment
Overview (2)

- **Channel State Information (CSI)**
 - Channel between transmit and receive antennas
 - Complex coefficient (describes gain and phase shift)

- **Instantaneous CSI**
 - Current values of coefficients
 - Needs to be estimated and used with short delay

- **Statistical CSI**
 - How are the coefficient correlated?
 - Can be estimated slowly with a long time window
 - Assumed to be known perfectly at both sides
Overview (3)

- System Operation (Block Fading):

 - Perfect Channel Estimation at Receiver
 - Often assumed when focus is on transmission design

 - Instantaneous Channel Information useful:
 - Receive processing (Interference suppression, detection)
 - Feedback (User selection, precoding, rate adaptation)
Outline

• System Model
• Channel Matrix Estimation
 ▪ MMSE Estimator and Training Design
• Length of Training Sequence
• Channel Norm Estimation
 ▪ MMSE Estimator and Training Design
• Numerical Examples
• Summary and References
System Model

• MIMO Communication:
 ▪ n_T transmit antennas, n_R receive antennas

• Communication model to user k:
 \[
 \begin{align*}
 \mathbf{y}_k(t) &= \mathbf{H}_k \cdot \mathbf{x}(t) + \mathbf{n}_k(t) \\
 &\quad \left(n_R \times 1\right) \quad \left(n_R \times n_T\right) \quad \left(n_T \times 1\right) \quad \left(n_R \times 1\right)
 \end{align*}
 \]
 ▪ $\mathbf{x}(t)$ transmitted signal, $\mathbf{y}_k(t)$ received signal
 ▪ $\mathbf{n}_k(t)$ potentially correlated complex Gaussian noise
 ▪ Rician distributed channel matrix:
 \[
 \text{vec}(\mathbf{H}_k) \in \mathcal{CN}(\text{vec}(\tilde{\mathbf{H}}_k), \mathbf{R}_k)
 \]
System Model (2)

• Problem description:
 ▪ Estimate properties of the channel matrix H_k
 ▪ In general, we are interested in some function $f(H_k)$ (receiver structure, modulation, precoding)

• In this work we estimate two parameters
 ▪ H_k channel matrix (many applications)
 ▪ $\|H_k\|^2_F$ channel gain (for user-selection, rate adaptation)

 ▪ It will be illustrated that calculation of $\|H_k\|^2_F$ from an estimation of H_k gives poor performance
System Model (3)

• Training-based channel estimation
 - Training sequence of length n_T
 (maximal length if no per-symbol power constraint)
 - Represented by matrix $\mathbf{P}_k \in \mathbb{C}^{n_T \times n_T}$
 - Training power constraint: $\text{tr}(\mathbf{P}^H_k \mathbf{P}_k) = \mathcal{P}$
 - Transmission of \mathbf{P}_k over n_T symbol slots:

$$\mathbf{Y}_k = \mathbf{H}_k \mathbf{P}_k + \mathbf{N}_k$$

$$\mathbf{Y}_k = [y_k(1), \ldots, y_k(n_T)], \quad \mathbf{N}_k = [n_k(1), \ldots, n_k(n_T)]$$

- General disturbance statistics:
 $$\text{vec}(\mathbf{N}_k) \in \mathcal{CN}(\text{vec}(\tilde{\mathbf{N}}_k), \mathbf{S}_k)$$
Kronecker Product

- **Definition:**
 \[
 A \otimes B = \begin{bmatrix}
 a_{11}B & \ldots & a_{1n}B \\
 \vdots & \ddots & \vdots \\
 a_{m1}B & \ldots & a_{mn}B
 \end{bmatrix}
 \]

- **Useful to analyze matrix multiplication:**
 \[
 \text{vec}(CH_kD) = (D^T \otimes C) \text{vec}(H_k)
 \]
 - Training matrix \(P_k\) multiplied from the right:
 \[
 \text{vec}(H_kP_k) = (P_k^T \otimes I) \text{vec}(H_k)
 \]
 - To analyze impact of \(P_k\) we will later assume Kronecker-structured channel properties and use that
 \[
 (A \otimes B)(E \otimes F) = (AE \otimes BF)
 \]
Channel Matrix Estimation

• MMSE Estimation of \mathbf{H}_k in a unified way

We consider Rician fading and Rician disturbance

Linear MMSE estimators have previously been derived:

Has also been done in the wrong way (suboptimally):

Channel Matrix Estimation (2)

- MMSE Estimator:

\[\text{vec}(\hat{H}_{\text{MMSE}}) = \]
\[\text{vec}(\bar{H}_k) + R_k \tilde{P}_k^H \left(\tilde{P}_k R_k \tilde{P}_k^H + S_k \right)^{-1} \]
\[\times \left(\text{vec}(Y_k) - \tilde{P}_k \text{vec}(\bar{H}_k) - \text{vec}(\bar{N}_k) \right) \]

\[\text{MSE} = \text{tr} \left\{ \left(R_k^{-1} + \tilde{P}_k^H S_k^{-1} \tilde{P}_k \right)^{-1} \right\} \]

where \(\tilde{P}_k = (P_k^T \otimes I) \)

- Linear/Affine (also LMMSE for non-Gaussian systems)
- Mean values do not affect the MSE
- Training matrix is clearly affecting the MSE
Channel Matrix Estimation (3)

- MSE minimizing training sequence design

\[
\min_{\mathbf{P}_k} \text{tr}\left\{ \left(\mathbf{R}_k^{-1} + (\mathbf{P}_k^T \otimes \mathbf{I}) \mathbf{H} \mathbf{S}_k^{-1} (\mathbf{P}_k^T \otimes \mathbf{I}) \right)^{-1} \right\}
\]

subject to \(\text{tr}(\mathbf{P}_k^H \mathbf{P}_k) = \mathcal{P} \).

- Training for multiple users: \(\mathbf{P}_k = \sqrt{\mathcal{P}/n_T} \mathbf{I} \)
- Training for single user:
 - Adapt training to channel and disturbance statistics
 - More training power in eigenmodes with strong SINRs

- Kronecker separability necessary for analysis: (dropped indices)

\[
\mathbf{R} = \mathbf{R}_T^T \otimes \mathbf{R}_R \quad \text{Transmit side} \quad \text{Receive side}
\]
\[
\mathbf{S} = \mathbf{S}_T^T \otimes \mathbf{S}_R \quad \text{Temporal} \quad \text{Receive side}
\]
Channel Matrix Estimation (4)

- **Eigenvalue decompositions:**
 \[R_T = U_T \text{diag}(\lambda_1^{(T)}, \ldots, \lambda_{n_T}^{(T)}) U_T^H \]
 \[S_T = V_T \text{diag}(\sigma_1^{(T)}, \ldots, \sigma_{n_T}^{(T)}) V_T^H \]

 - Opposite ordering of eigenvalues

- **Conclusions from training optimization:**
 - Matrix structure: \(P = U_T \text{diag}(\sqrt{p_1}, \ldots, \sqrt{p_{n_T}}) V_T^H \)

 Eigenvectors from transmit channel and temporal covariance (\(R_T \) and \(S_T \)), in opposite order of dominance.

 Conclusion: Separation in \(n_T \) virtual channels with SINRs \(p_j \lambda_j^{(T)} / \sigma_j^{(T)} \) where large \(\lambda_j^{(T)} \) assigned to small \(\sigma_j^{(T)} \).
Channel Matrix Estimation (5)

• Additional conclusions:
 - MSE with optimal training is Schur-concave in transmit channel covariance eigenvalues.

 Conclusion: It is good to have a spread of eigenvalues, since spatial correlation improves estimation.

 - Asymptotics:
 - Low SINR: All power in strongest eigenmode
 - High SINR: Proportional to noise standard deviation

\[
P = U_T \text{diag}(\sqrt{p_1}, \ldots, \sqrt{p_{nT}}) V_T^H
\]
Channel Matrix Estimation (6)

- Mathematical tools used in the proofs
 - MSE is a convex function (w.r.t. training powers)
 - Majorization theory
 - Training matrix based on channel/disturbance eigenvectors
 - Strong channel eigenvalues allocated to weak disturbance
 - Spatial correlation improves estimation performance
 - Convex optimization
 - Asymptotic optimal training, high/low SINR
 - Explicit optimal solutions in certain cases (next slide)
Channel Matrix Estimation (7)

- Training powers explicitly in certain cases
 - Identity as transmit channel and temporal covariance:
 \[R_T = S_T = I \]
 Result: Equal power allocation: \[p_j = P/n_T \forall j \]
 - Identical receive covariance for channel and disturbance:
 \[R_R = S_R \]
 Result: Convex optimization problem
 \[p_j = \max \left(\sqrt{\frac{\sigma_j^{(T)}}{\alpha}} - \frac{\sigma_j^{(T)}}{\lambda_j^{(T)}}, 0 \right) \]
 \[\alpha \text{ Lagrange multiplier} \]
 Gives good numerical results also for general covariance
Length of training sequence

- Waterfilling of training powers
 - For low training power P and/or large eigenvalue spread, some training powers will become zero.
 - In the previous case, P is full rank if
 \[
 P > \sum_{j=1}^{n_T-1} \frac{\sqrt{\sigma_j(T)\sigma_{n_T}(T)}}{\lambda_{n_T}(T)} - \frac{\sigma_j(T)}{\lambda_j(T)}
 \]
 and otherwise have rank $m < n_T$ where
 \[
 \sum_{j=1}^{m-1} \frac{\sqrt{\sigma_j(T)\sigma_m(T)}}{\lambda_m(T)} - \frac{\sigma_j(T)}{\lambda_j(T)} < P \leq \sum_{j=1}^{m} \frac{\sqrt{\sigma_j(T)\sigma_{m+1}(T)}}{\lambda_{m+1}(T)} - \frac{\sigma_j(T)}{\lambda_j(T)}.
 \]
Length of training sequence (2)

- If \(\text{rank}(P) = m < n_T \)
 - \(m \) is the maximal necessary training sequence length
 (only approximately if disturbance contains information)

- Example:
Length of training sequence (3)

• Conclusion:
 ▪ The optimal number of training symbols can be smaller than the number of transmit antennas (in spatially correlated systems, limited power)

How is this related to:

“When the training and data powers are allowed to vary, we show that the optimal number of training symbols is equal to the number of transmit antennas”

▪ Their result is shown for uncorrelated systems, but the result have been cited for other applications!
Channel Norm Estimation

- MMSE Estimation of $\|H\|_F^2$ in similar way
 - Considerably more difficult to analyze
 - We limit ourself to zero-mean Kronecker channels
 - No previous results in the area, by our knowledge

- Conjecture: Structure of training matrix
 - Same structure as in the channel matrix estimation
 - Makes it possible to estimate $\|H\|_F^2$ as a sum of independent variables.
Channel Norm Estimation (2)

- MMSE estimator of $\rho = \|H\|_F^2$ and MSE:

$$\hat{\rho}_{\text{MMSE}} = 1^T B \Sigma 1 + \tilde{y}^H \tilde{D} B^2 \tilde{D} \tilde{y}$$

$$E\{|\rho - \hat{\rho}_{\text{MMSE}}|^2\} = 1^T B (\tilde{\Sigma}^2 + 2 \tilde{D} \tilde{\Sigma} \tilde{\Lambda} \tilde{D}) B 1$$

where

- $\tilde{y} = \text{vec}(U_R^H YV_T \Pi)$,
- $B = \Lambda (\tilde{D} \Lambda \tilde{D} + \Sigma)^{-1}$,
- $\tilde{D} = (\text{diag}(\sqrt{p_1}, \ldots, \sqrt{p_{n_T}}) \otimes I)$,
- $\Lambda = \Lambda_T \otimes \Lambda_R$,
- $\Sigma = (\Pi \Sigma_T \Pi^T) \otimes (\Pi \Sigma_R \Pi^T)$,
- $1 = [1, \ldots, 1]^T$.
Channel Norm Estimation (3)

• Training sequence design
 - More difficult to solve since the MSE is not convex

• Two approaches:
 - Small set of potential explicit solutions can be derived
 (in the case of $R_R = S_R$, otherwise approximately)
 - An additional constraint can make the problem convex

• Asymptotic results:
 - Low SINR: All power allocated to strongest eigenmode
 - High SINR: Proportional distribution to standard deviation
 of channel and disturbance eigenmodes
 (different from the channel matrix case)
Numerical Examples

• Numerical illustrations of performance
 ▪ MMSE estimators compared with other estimators
 ▪ Uniform training compared with optimal training

• System parameters
 ▪ Kronecker-structure of covariance matrices
 ▪ Uncolored disturbance (noise-limited system)
 ▪ Transmit and receive channel covariance modeled with exponential model (model of a Uniform Linear Array)
Numerical Examples (2)

• Channel Matrix Estimation
 - Comparison of four different estimators, optimal training
 - Normalized MSE: $E\{\|H - \hat{H}_{\text{MMSE}}\|_F^2\}/\text{tr}(R)$

8 Transmit Antennas

4 Receive Antennas

Correlation Parameter: 0.8

2009-02-11
Numerical Examples (3)

- Channel Matrix Estimation
 - Comparison of different training sequences
 - Normalized MSE: \[E\left\{ \|H - \widehat{H}_{\text{MMSE}}\|_F^2 \right\}/\text{tr}(R) \]

8 Transmit Antennas
4 Receive Antennas
Correlation Parameter: 0.8
Numerical Examples (4)

- Channel Squared Norm Estimation
 - Comparison of MMSE and indirect estimation
 - Normalized MSE: \(E\{\|H\|_F^2 - \|\hat{H}_{\text{MMSE}}\|_F^2\}/\text{tr}(RR^H) \)

8 Transmit Antennas (corr: 0.8)

4 Receive Antennas (corr: 0)
Summary

• Training-based channel estimation
 ▪ Narrowband multi-antenna system
 ▪ Channel Matrix, Channel Squared Norm

• MMSE Estimation
 ▪ The general MMSE estimators becomes linear

• MSE minimizing training design
 ▪ Training matrix is a weighting of eigenmodes of channel and disturbance covariance matrices
 ▪ Waterfilling structure on power allocation
 ▪ Explicit power allocation results: For certain covariance structures and asymptotically.
Summary (2)

• Main contributions:
 ▪ **Channel Matrix Estimation**:
 • Generalization to Rician channels/disturbance
 • Unification of previous results:
 Which results depend on which assumptions?
 • Analysis of the optimal training length
 • Identification of mistakes in other papers
 ▪ **Channel Norm Estimation**:
 • Novel estimation and training optimization results
 • Clear gain in MSE compared to indirect estimation
References

