Energy-Efficient Communication in Wireless Networks

Small or massive MIMO?

Dr. Emil Björnson

Seminar at 5GrEEn Summer School, KTH Kista, Stockholm
26 August 2014
Biography

• 1983: Born in Malmö, Sweden

• 2007: Master in Engineering Mathematics, Lund University, Sweden

• 2011: PhD in Telecommunications, KTH, Stockholm, Sweden

• 2012-2014: Joint post-doc at Supélec, Paris, and KTH, based on International postdoc grant “Optimization of Green Small-Cell Networks”

• 2014: Assistant Professor in Communication Systems, Linköping University, Sweden
Outline

• Introduction & Background

• Part 1: Problem Formulation
 - Detailed system model (energy-efficiency, rates and power consumption)

• Part 2: Optimization of Energy-Efficiency
 - Optimal system parameters: Reveal fundamental interplay
 - Numerical results: Single-cell and multi-cell

• Part 3: Massive MIMO
 - Main properties and deployment ideas

• Part 4: Multi-Objective Network Optimization
 - Optimizing energy-efficiency and other metrics \textit{in parallel}
Introduction & Background
Introduction

• Wireless Connectivity
 - A natural part of our lives

- Video streaming
- Web browsing
- Voice call
- Social networks
- Gaming

• Rapid Network Traffic Growth
 - 61% annual growth
 - Exponential increase!
 - Extrapolation:
 - 20x until 2020
 - 200x until 2025
 - 2000x until 2030

Exabytes per Month

2.2 GB/person/month

210 MB/month/person

Source: Cisco VNI Mobile, 2014
Exponential Traffic Growth

• Is this Growth Sustainable?
 - User demand will increase – users expect more for same price
 - Traffic supply – increases only if business models allow it!

• Exponential Growth is Nothing New!
 - 10^6 increase in last 45 years!

Martin Cooper’s law
The number of simultaneous voice/data connections has doubled every 2.5 years since the beginning of wireless

- Coopers law: 32%/year
- New predictions: 61%/year

Source: Personal Communications in 2025, Martin Cooper
Wireless Networks

- Cellular Network Architecture
 - Coverage Area divided into cells
 - One fixed base station per cell
 - Serves all users in the cell

- Different Standards
 - 2G (GSM), 3G (UMTS), 4G (LTE/LTE-A)

More and more focus on data traffic

- Traditional Ways to Handle More Traffic
 - Higher cell density (variable cell sizes)
 - More spectrum (carrier aggregation)
 - Higher spectral efficiency (spatial processing)
High Data Rates

• Traditional Design Metric
 - High peak and/or average rates [bit/s/active user]

• Basic Signal Propagation
 - Signal energy decays with distance
 - Peak rates in cell center
 - Far from peak rates at cell edge

• Traffic Independent of Location
 - Easily satisfied in cell center
 - Highest demand at cell edge!

Need for Additional Metrics!
To optimize and design our networks properly!
Expectations for 5G Networks

• 5G – The Next Network Generation
 - Expected to be introduced by year 2020
 - Design objectives are currently being defined

<table>
<thead>
<tr>
<th>5G Performance Metrics</th>
<th>Expectation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate (Mbit/s/active user)</td>
<td>10-100x</td>
</tr>
<tr>
<td>Average Area Rate (Mbit/s/km²)</td>
<td>1000x</td>
</tr>
<tr>
<td>Active devices (per km²)</td>
<td>10-100x</td>
</tr>
<tr>
<td>Energy-Efficiency (Mbit/Joule)</td>
<td>1000x</td>
</tr>
</tbody>
</table>

Source: METIS project (www.metis2020.com)

Parts 1-3
What if we optimize a network only for energy-efficiency?
What will it look like?

Part 4
Is it possible to optimize a network with respect to multiple metrics?
What does “optimality” mean then?
Part 1

Problem Formulation
How to Measure Energy-Efficiency?

• Energy-Efficiency (EE) in bit/Joule

\[EE = \frac{\text{Average Sum Rate [bit/s/cell]}}{\text{Power Consumption [Joule/s/cell]}} \]

• Conventional Academic Approaches:
 - Maximize rates with fixed power
 - Minimize transmit power for fixed rates
 - See for example:

 Optimal Resource Allocation in Coordinated Multi-Cell Systems

 Book from 2013 by Emil Björnson and Eduard Jorswieck

 Free to download from my homepage

New Problem: Balance rates and power consumption

Important to account for overhead signaling and circuit power!
Basic Information Theory

Achievable Rate per Active User [Lower Bound on Shannon Capacity]

\[
\text{Bandwidth} \cdot \log_2 \left(1 + \frac{\text{Received Signal Power}}{\text{Interference Power} + \text{Noise Power}} \right) \quad \text{[bit/s/active user]}
\]

Signal-to-interference-and-noise ratio (SINR)

- More than One Active User per Cell?
 - Yes, but causes inter-user interference
 - Traditional approach: Orthogonal in time/frequency (TDMA, OFDMA)
 - New multi-antenna approach: Space-division multiple access (SDMA)

Known as

Multi-user MIMO (Multiple input multiple output)
Beamforming in Line-of-Sight and Non-Line-of-Sight

- **Line-of-Sight**
 - Adapt signal phases at antennas
 - Steer beam towards receiving user
 - Imperfect beams: inter-user interference

- **Non-Line-of-Sight**
 - Multipath propagation
 - Add components coherently
 - Coherent
 - Non-Coherent
Single-Cell: Optimizing for Energy-Efficiency

- **Clean Slate Design**
 - Single Cell: One base station (BS) with M antennas
 - Geometry: Random distribution for user locations and pathlosses
 - Multiple users: Pick K users randomly and serve with some rate R

Problem Formulation

Select (M, K, R) to maximize EE!

Next Step

Find expression: EE as a function of M, K, R.
System Model: Protocol

- **Time-Division Duplex (TDD) Protocol**
 - Uplink and downlink separated in time
 - Uplink fraction $\zeta^{(ul)}$ and downlink fraction $\zeta^{(dl)}$

- **Coherence Block**
 - B Hz bandwidth = B “channel uses” per second (symbol time $1/B$)
 - Channel stays fixed for U channel uses (symbols) = Coherence block
 - Determines how often we send pilot signals to estimate channels

Assumption: Perfect channel estimation (relaxed later)
System Model: Channels

- **Flat-Fading Channels**
 - Channel between BS and User k: $h_k \in \mathbb{C}^M$
 - Rayleigh fading: $h_k \sim CN(0, \lambda_k \mathbb{I})$
 - Channel variances λ_k: Random variables, pdf $f_\lambda(x)$

- **Uplink Transmission**
 - User k transmits signal s_k with power $\mathbb{E}\{|s_k|^2\} = p_k^{(ul)}$ [Joule/channel use]
 - Received signal at BS:
 \[
 y = h_k s_k + \sum_{i=1, i \neq k}^{K} h_i s_i + n
 \]
 - Recover s_k by receive beamforming g_k as $g_k^H y$:
 \[
 \text{SINR}^{(ul)}_k = \frac{\mathbb{E}\{|s_k|^2 | g_k^H h_k|^2\}}{\sum_{i \neq k} \mathbb{E}\{|s_i|^2 | g_k^H h_i|^2\} + \mathbb{E}\{|g_k^H n|^2\}} = \frac{p_k^{(ul)} |g_k^H h_k|^2}{\sum_{i \neq k} p_i^{(ul)} |g_k^H h_i|^2 + \sigma^2 \|g_k\|^2}
 \]
System Model: Channels (2)

- **Flat-Fading Channels**
 - Channel between BS and User k: $h_k \in \mathbb{C}^M$
 - Rayleigh fading: $h_k \sim \mathcal{CN}(0, \lambda_k \mathbf{I})$
 - Channel variances λ_k: Random variables, pdf $f_\lambda(x)$

- **Downlink Transmission**
 - BS transmits d_k to User k with power $\mathbb{E}\{|d_k|^2\} = p_k^{(dl)}$ [Joule/channel use]
 - Spatial directivity by beamforming vector \mathbf{v}_k
 - Received signal at User k:

$$y_k = h_k^H \frac{\mathbf{v}_k}{\|\mathbf{v}_k\|} d_k + \sum_{i=1, i \neq k}^{K} h_k^H \frac{\mathbf{v}_i}{\|\mathbf{v}_i\|} d_i + n_k$$

 - Recover d_k at User k:

$$\text{SINR}^{(dl)}_k = \frac{p_k^{(dl)} |h_k^H \mathbf{v}_k|^2 / \|\mathbf{v}_k\|^2}{\sum_{i \neq k} p_i^{(dl)} |h_k^H \mathbf{v}_i|^2 / \|\mathbf{v}_i\|^2 + \sigma^2}$$

 - Signals from other users (interference)
 - Noise $\sim \mathcal{CN}(0, \sigma^2)$
System Model: How Much Transmit Power?

- Design Parameter: Gross rate R

 - Make sure that $R = \begin{cases} B \log_2(1 + \text{SINR}_{k}^{(ul)}) & \text{for all } k \text{ in uplink} \\ B \log_2(1 + \text{SINR}_{k}^{(dl)}) & \text{for all } k \text{ in downlink} \end{cases}$

 - Select beamforming g_k and v_k, adapt transmit power $p_k^{(ul)}$ and $p_k^{(dl)}$

- Gives K Equations:

 - \[
 p_k^{(ul)} |g_k^H h_k|^2 = (2^{R/B} - 1)(\sum_{i \neq k} p_i^{(ul)} |g_i^H h_i|^2 + \sigma^2 \|g_k\|^2) \quad \text{for } k = 1, ..., K
 \]

 - \[
 p_k^{(dl)} \frac{|h_k^H v_k|^2}{\|v_k\|^2} = (2^{R/B} - 1)(\sum_{i \neq k} p_i^{(dl)} \frac{|h_i^H v_i|^2}{\|v_i\|^2} + \sigma^2) \quad \text{for } k = 1, ..., K
 \]

- Linear equations in transmit powers \rightarrow Solve by Gaussian elimination!

Total Transmit Power [Joule/s] for $g_k = v_k$

Uplink energy/symbol: $\sigma^2 D^{-H} 1$
Downlink energy/symbol: $\sigma^2 D^{-1} 1$

Same total power: $P_{\text{trans}} = B \mathbb{E}\{\sigma^2 1^H D^{-1} 1\} = B \mathbb{E}\{\sigma^2 1^H D^{-H} 1\}$

where $[D]_{k,l} = \begin{cases} \frac{|h_k^H v_k|^2}{(2^{R/B-1})\|v_k\|^2} & \text{for } k = l \\ -\frac{|h_k^H v_l|^2}{\|v_l\|^2} & \text{for } k \neq l \end{cases}$
System Model: How Much Transmit Power? (2)

- What did we Derive?
 - Optimal power allocation for fixed beamforming vectors

Different Beamforming
- Notation: $\mathbf{G} = [\mathbf{g}_1, \ldots, \mathbf{g}_K]$, $\mathbf{V} = [\mathbf{v}_1, \ldots, \mathbf{v}_K]$, $\mathbf{H} = [\mathbf{h}_1, \ldots, \mathbf{h}_K]$, $\mathbf{P}(ul) = \text{diag}(p_1^{(ul)}, \ldots, p_K^{(ul)})$

- Maximum ratio trans./reception (MRT/MRC): $\mathbf{G} = \mathbf{V} = \mathbf{H}$
- Zero-forcing (ZF) beamforming: $\mathbf{G} = \mathbf{V} = \mathbf{H} (\mathbf{H}^H \mathbf{H})^{-1}$
- Optimal beamforming: $\mathbf{G} = \mathbf{V} = (\sigma^2 \mathbf{I} + \mathbf{H} \mathbf{P}^{(ul)} \mathbf{H}^H)^{-1} \mathbf{H}$

Balance signal and interference (iteratively!)
System Model: How Much Transmit Power? (3)

- Simplified Expressions for ZF ($M \geq K + 1$)
 - Main property: $H^H V = H^H H (H^H H)^{-1} = I$
 - Hence: $[D]_{k,l} = \begin{cases}
 \frac{|h_k^H v_k|^2}{(2^R/B - 1)\|v_k\|^2} & \text{for } k = l \\
 - \frac{|h_k^H v_l|^2}{\|v_l\|^2} & \text{for } k \neq l
 \end{cases} = \begin{cases}
 \frac{1}{(2^R/B - 1)\|v_k\|^2} & \text{for } k = l \\
 0 & \text{for } k \neq l
 \end{cases}$

- Total transmit power:
 \[
 P_{\text{trans}} = \mathbb{E}\{B\sigma^2 1^H D^{-1} 1\} = B\sigma^2 (2^R/B - 1) \sum_k \mathbb{E}\{\|v_k\|^2\} = B\sigma^2 (2^R/B - 1) \frac{K}{M - K} \mathbb{E}\{\frac{1}{\lambda}\}
 \]

 \[
 = \text{tr}\left((H^H H)^{-1}\right)
 \]

Summary: Transmit Power with ZF

Parameterize gross rate as $R = B \log_2(1 + \alpha(M - K))$ for some α

Total transmit power: $P_{\text{trans}} = \alpha B\sigma^2 S_\lambda K$ [Joule/s]
Detailed Power Consumption Model

• What Consumes Power?
 - Not only radiated transmission power
 - Circuits, signal processing, backhaul, etc.
 - Must be specified as functions of M, K, R

• Power Amplifiers
 - Amplifier efficiencies: $\eta^{(ul)}, \eta^{(dl)} \in (0,1]$
 - Average inefficiency: $\bar{\zeta}^{(ul)} / \eta^{(ul)} + \bar{\zeta}^{(dl)} / \eta^{(dl)} = \frac{1}{\eta}$

 Summary: $\frac{P_{\text{trans}}}{\eta}$

• Active Transceiver Chains
 - P_{FIX} = Fixed power (control signals, oscillator at BS, standby, etc.)
 - P_{BS} = Circuit power / BS antenna (converters, mixers, filters)
 - P_{UE} = Circuit power / user (oscillator, converters, mixer, filters)

 Summary: $P_{\text{FIX}} + M \cdot P_{\text{BS}} + K \cdot P_{\text{UE}}$
Detailed Power Consumption Model (2)

- **Signal Processing**
 - Channel estimation and beamforming
 - Efficiency: L_{BS}, L_{UE} arithmetic operations / Joule

- **Channel Estimation:**
 $$\frac{B}{U} \left(\frac{2\tau^{(ul)} MK^2}{L_{BS}} + \frac{4\tau^{(dl)} K^2}{L_{UE}} \right)$$
 - Once in uplink/downlink per coherence block
 - Pilot signal lengths: $\tau^{(ul)} K, \tau^{(dl)} K$ for some $\tau^{(ul)}, \tau^{(dl)} \geq 1$

- **Linear Processing** (for $\mathbf{G} = \mathbf{V}$):
 $$\frac{B}{U} \frac{C_{\text{beamforming}}}{L_{BS}} + B \left(1 - \frac{\tau^{(ul)} + \tau^{(ul)}}{U} \right) \frac{2MK}{L_{BS}}$$
 - Compute beamforming vector once per coherence block
 - Use beamforming for all $B(1 - (\tau^{(ul)} + \tau^{(ul)})K/U)$ symbols

- **Types of beamforming:**
 - $C_{\text{beamforming}} = \begin{cases}
 3MK & \text{for MRT/MRC} \\
 3MK^2 + MK + \frac{1}{3}K^3 & \text{for ZF} \\
 Q(3MK^2 + MK + \frac{1}{3}K^3) & \text{for Optimal}
 \end{cases}$
Detailed Power Consumption Model (3)

- **Coding and Decoding:** $R_{\text{sum}} (P_{\text{COD}} + P_{\text{DEC}})$
 - $P_{\text{COD}} = $ Energy for coding data / bit
 - $P_{\text{DEC}} = $ Energy for decoding data / bit

- **Sum rate:**

 $$R_{\text{sum}} = K \left(\zeta^{(\text{ul})} - \frac{\tau^{(\text{ul})}K}{U} \right) R + K \left(\zeta^{(\text{dl})} - \frac{\tau^{(\text{dl})}K}{U} \right) R$$

 $$= K \left(1 - \frac{(\tau^{(\text{ul})} + \tau^{(\text{dl})})K}{U} \right) R$$

- **Backhaul Signaling:** $P_{\text{BH}} + R_{\text{sum}} P_{\text{BT}}$
 - $P_{\text{BH}} = $ Load-independent backhaul power
 - $P_{\text{BT}} = $ Energy for sending data over backhaul / bit
Detailed Power Consumption Model: Summary

- Many Things Consume Power
 - Parameter values (e.g., P_{BS}, P_{UE}) change over time
 - Structure is important for analysis

Generic Power Model

$$
\frac{P_{trans}}{\eta} + C_{0,0} + C_{0,1}M + C_{1,0}K + C_{1,1}MK + C_{2,0}K^2 + C_{3,0}K^3 + C_{2,1}MK^2 + AK \left(1 - \frac{(\tau^{(ul)} + \tau^{(dl)})K}{U} \right) R
$$

- Transmit with amplifiers
- Circuit power per transceiver chain
- Cost of signal processing
- Coding/decoding/backhaul

for some parameters $C_{l,m}$ and A

- Observations
 - Polynomial in M and $K \rightarrow$ Increases faster than linear with K
 - Depends on cell geometry only through P_{trans}
Finally: Problem Formulation

- Maximize Energy-Efficiency:

\[
\max_{M, K, R} \frac{K \left(1 - \frac{(τ^{ul}) + (τ^{dl})K}{U}\right)R}{P_{\text{trans}} \frac{\eta}{\eta} + \sum_{i=0}^{3} C_{i,0}K^i + \sum_{i=0}^{2} C_{i,1}MK^i + AK \left(1 - \frac{(τ^{ul}) + (τ^{dl})K}{U}\right)R}
\]

Average Sum Rate [bit/s/cell]

Power Consumption [Joule/s/cell]

Closed Form Expressions with ZF

Recall: \(R = B \log_2(1 + \alpha(M - K)) \) for some \(\alpha \) and \(P_{\text{trans}} = \alpha B \sigma^2 S \lambda K \)

Define: \(τ = τ^{ul} + τ^{dl} \)

\[
\max_{M, K, \alpha} \frac{K \left(1 - \frac{\tau K}{U}\right)B \log_2(1 + \alpha(M - K))}{\frac{\alpha B \sigma^2 S \lambda K}{\eta} + \sum_{i=0}^{3} C_{i,0}K^i + \sum_{i=0}^{2} C_{i,1}MK^i + AK \left(1 - \frac{\tau K}{U}\right)B \log_2(1 + \alpha(M - K))}
\]

Simple ZF expression: Used for analysis, other beamforming by simulation
Why Such a Detailed/Complicated Model?

- Simplified Model \(\rightarrow \) Unreliable Optimization Results
 - Two examples based on ZF
 - Beware: Both has appeared in the literature!

- Example 1: Fixed circuit power and no coding/decoding/backhaul
 \[
 \begin{align*}
 \text{maximize } & \quad K \left(1 - \frac{\tau K}{U}\right) B \log_2(1 + \alpha(M - K)) \\
 & \quad \frac{\alpha B \sigma^2 S \lambda K}{\eta} + C_{0,0}
 \end{align*}
 \]
 - If \(M \to \infty \), then \(\log_2(1 + \alpha(M - K)) \to \infty \) and thus EE \(\to \infty \)!

- Example 2: Ignore pilot overhead and signal processing
 \[
 \begin{align*}
 \text{maximize } & \quad KB \log_2(1 + \alpha(M - K)) \\
 & \quad \frac{\alpha B \sigma^2 S \lambda K}{\eta} + C_{0,0} + C_{1,0}K + C_{0,1}M
 \end{align*}
 \]
 - If \(M, K \to \infty \) with \(\frac{M}{K} \) = constant \(> 1 \), then \(\log_2(1 + \alpha K \left(\frac{M}{K} - 1\right)) \to \infty \) and EE \(\to \infty \)!
Part 1

Questions?
Part 2

Optimization of Energy-Efficiency
Preliminaries

- Our Goal
 - Optimize number of antennas M
 - Optimize number of active users K
 - Optimize the (normalized) transmit power α

- Outline
 - Optimize each variable separately
 - Devise an alternating optimization algorithm

Definition (Lambert W function)

- Lambert W function, $W(x)$, solves equation $W(x)e^{W(x)} = x$
- The function is increasing and satisfies $W(0) = 0$
- $e^{W(x)}$ behaves as a linear function (i.e., $e^{W(x)} \approx x$):

\[
\frac{x e}{\log_e(x)} \leq e^{W(x) + 1} \leq \frac{x}{\log_e(x)}(1 + e) \quad \text{for} \quad x \geq e.
\]
Solving Optimization Problems

• How to Solve an Optimization Problem?
 - Simple if the function is “nice”:

 Quasi-Concave Function

 For any two points on the graph of the function, the line between the points is below the graph.

 Property: Goes up and then down
 Examples: \(-x^2, \log(x)\)

• Maximization of a Quasi-Concave Function \(\varphi(x)\):
 1. Compute the first derivative \(\frac{d}{dx} \varphi(x)\)
 2. Find switching point by setting \(\frac{d}{dx} \varphi(x) = 0\)
 3. Only one solution \(\Rightarrow\) It is the unique maximum!
Optimal Number of BS Antennas

- Find M that maximizes EE with ZF:

$$\max_{M \geq K + 1} \frac{K \left(1 - \frac{\tau K}{U}\right) B \log_2 (1 + \alpha (M - K))}{\frac{\alpha B \sigma^2 S \lambda K}{\eta} + \sum_{i=0}^{3} C_{i,0} K^i + \sum_{i=0}^{2} C_{i,1} MK^i + AK \left(1 - \frac{\tau K}{U}\right) B \log_2 (1 + \alpha (M - K))} + \sum_{i=0}^{3} C_{i,0} K^i + \sum_{i=0}^{2} C_{i,1} MK^i + AK \left(1 - \frac{\tau K}{U}\right) B \log_2 (1 + \alpha (M - K))}$$

Theorem 1 (Optimal M)

EE is quasi-concave w.r.t. M and maximized by

$$M^* = e \left(\frac{\alpha (B \sigma^2 S \lambda K / \eta + \sum_{i=0}^{3} C_{i,0} K^i)}{e \sum_{i=0}^{2} C_{i,1} K^i} + \frac{\alpha K - 1}{e} \right) + 1$$

- Observations
 - Increases with circuit coefficients independent of M (e.g., $P_{\text{FIX}}, P_{\text{UE}}$)
 - Decreases with circuit coefficients multiplied with M (e.g., $P_{\text{BS}}, 1/L_{\text{BS}}$)
 - Independent of cost of coding/decoding/backhaul
 - Increases with power α approx. as $\frac{\alpha}{\log \alpha}$ (almost linear)
Optimal Transmit Power

- Find α that maximizes EE with ZF:

$$\text{maximize} \quad \frac{K \left(1 - \frac{\tau K}{U}\right) B \log_2(1 + \alpha(M - K))}{\frac{\alpha B \sigma^2 S \lambda K}{\eta} + \sum_{i=0}^{3} C_{i,0} K^i + \sum_{i=0}^{2} C_{i,1} M K^i + AK \left(1 - \frac{\tau K}{U}\right) B \log_2(1 + \alpha(M - K))}$$

Theorem 2 (Optimal α)

EE is quasi-concave w.r.t. α and maximized by

$$\alpha^* = e^{\frac{\eta (M-K) (\sum_{i=0}^{3} C_{i,0} K^i + \sum_{i=0}^{2} C_{i,1} M K^i) \frac{1}{e}}{B \sigma^2 S \lambda \left(\sum_{i=0}^{3} C_{i,0} K^i + \sum_{i=0}^{2} C_{i,1} M K^i\right) \frac{1}{e}} + 1} - 1$$

- Observations
 - Increases with all circuit coefficients (e.g., $P_{\text{FIX}}, P_{\text{BS}}, P_{\text{UE}}, 1/L_{\text{BS}}$)
 - Independent of cost of coding/decoding/backhaul
 - Increases with M approx. as $\frac{M}{\log M}$ (almost linear)

More circuit power \rightarrow More transmit power
Optimal Number of Users

- Find K that maximizes EE with ZF:

$$
\text{maximize} \quad K \left(1 - \frac{\tau K}{U}\right) B \log_2(1 + \bar{\alpha}(\bar{\beta} - 1))
\frac{\bar{\alpha} B \sigma^2 S_\lambda}{\eta} + \sum_{i=0}^3 C_{i,0} K^i + \sum_{i=0}^2 C_{i,1} \bar{\beta} K^{i+1} + AK \left(1 - \frac{\tau K}{U}\right) B \log_2(1 + \bar{\alpha}(\bar{\beta} - 1))
$$

where $\bar{\alpha} = \alpha K$ and $\bar{\beta} = \frac{M}{K}$ are fixed

Theorem 3 (Optimal K)

EE is quasi-concave w.r.t. K

Maximized by the root of a quartic polynomial:
Closed form for K^* but very “large” expressions

- Observations
 - Increases with fixed circuit power (e.g., P_{FIX})
 - Decreases with circuit coefficients multiplied with M or K ($P_{\text{BS}}, P_{\text{UE}}, 1/L_{BS}$)
Impact of Cell Size

• Are Smaller Cells More Energy Efficient?
 - Recall: $s_\lambda = \mathbb{E}\left\{\frac{1}{\lambda}\right\}$
 - Smaller cells $\rightarrow \lambda$ is larger $\rightarrow s_\lambda$ is smaller

• For any given parameters M, α, K
 - Smaller s_λ \rightarrow smaller transmit power $\alpha B \sigma^2 s_\lambda K$
 - Higher EE!

• Expressions for M^*, α^*, K^*
 - M^* and K^* increases with s_λ
 - α^* decreases with s_λ
 - Smaller cells:
 Less hardware and fewer users per cell
 Use shorter distances to reduce power

Dependence on Other Parameters

Many other observations can be made
Example: Impact of bandwidth B, coherence block length U, etc.
• Joint EE Optimization
 - EE is a function of M, α, and K
 - Theorems 1-3 optimize one parameter, when the other two are fixed
 - Can we optimize all of them?

Algorithm: Alternating Optimization

1. Assume that an initial set (M, α, K) is given
2. Update number of users K (and implicitly M and α) using Theorem 3
3. Update number of antennas M using Theorem 1
4. Update transmit power (α) using Theorem 2
5. Repeat 2.-5. until convergence

Theorem 4
The algorithm convergences to a local optimum to the joint EE optimization problem

Disclaimer
M and K should be integers
Theorems 1 and 3 give real numbers → Take one of the 2 closest integers
Single-Cell Simulation Scenario

• Main Characteristics
 - Circular cell with radius 250 m
 - Uniform user distribution
 - Uncorrelated Rayleigh fading
 - Typical 3GPP pathloss model

• Many Parameters in the System Model
 - We found numbers from ≈ 2012 in the literature:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell radius (single-cell): d_{max}</td>
<td>250 m</td>
<td>Fraction of downlink transmission: $\zeta^{(d)}$</td>
<td>0.6</td>
</tr>
<tr>
<td>Minimum distance: d_{min}</td>
<td>35 m</td>
<td>Fraction of uplink transmission: $\zeta^{(u)}$</td>
<td>0.4</td>
</tr>
<tr>
<td>Large-scale fading model: $l(x)$</td>
<td>$10^{-3.53/|x|^{3.76}}$</td>
<td>PA efficiency at the BSs: $\eta^{(d)}$</td>
<td>0.39</td>
</tr>
<tr>
<td>Transmission bandwidth: B</td>
<td>20 MHz</td>
<td>PA efficiency at the UEs: $\eta^{(u)}$</td>
<td>0.3</td>
</tr>
<tr>
<td>Channel coherence bandwidth: B_C</td>
<td>1800 kHz</td>
<td>Fixed power consumption (control signals, backhaul, etc.): P_{FIX}</td>
<td>18 W</td>
</tr>
<tr>
<td>Channel coherence time: T_C</td>
<td>10 ms</td>
<td>Power consumed by local oscillator at BSs: P_{SYN}</td>
<td>2 W</td>
</tr>
<tr>
<td>Coherence block (channel uses): U</td>
<td>1800</td>
<td>Power required to run the circuit components at a BS: P_{BS}</td>
<td>1 W</td>
</tr>
<tr>
<td>Total noise power: $B\sigma^2$</td>
<td>-96 dBm</td>
<td>Power required to run the circuit components at a UE: P_{UE}</td>
<td>0.1 W</td>
</tr>
<tr>
<td>Relative pilot lengths: $\tau^{(u)}$, $\tau^{(d)}$</td>
<td>1</td>
<td>Power required for coding of data signals: P_{COD}</td>
<td>0.1 W/(Gbit/s)</td>
</tr>
<tr>
<td>Computational efficiency at BSs: L_{BS}</td>
<td>12.8 Gflops/W</td>
<td>Power required for decoding of data signals: P_{DEC}</td>
<td>0.8 W/(Gbit/s)</td>
</tr>
<tr>
<td>Computational efficiency at UEs: L_{UE}</td>
<td>5 Gflops/W</td>
<td>Power required for backhaul traffic: P_{BT}</td>
<td>0.25 W/(Gbit/s)</td>
</tr>
</tbody>
</table>
Optimal Single-Cell System Design: ZF Beamforming

Optimum

\[M = 165 \]
\[K = 104 \]
\[\alpha = 0.87 \]

User rates:
\[\approx 64\text{-QAM} \]

Massive MIMO!

Name for multi-user MIMO with very many antennas

Global Optimum:
\[M = 165, \ K = 104 \]
\[\text{EE} = 30.7 \text{ Mbit/J} \]

Energy Efficiency [Mbit/Joule]

Number of Antennas \((M)\)

Number of Users \((K)\)
Optimal Single-Cell System Design: “Optimal” Beamforming

Optimum

\[
\begin{align*}
M &= 145 \\
K &= 95 \\
\alpha &= 0.91
\end{align*}
\]

User rates: \(\approx 64\)-QAM

Not optimal!

Gives optimal beamforming but computations are too costly

![Graph showing energy efficiency](image)

\[Q = 3\]

Global Optimum:
\[M = 145, K = 95, \text{EE} = 30.3 \text{ Mbit/J}\]
Optimal Single-Cell System Design: MRT/MRC Beamforming

Optimum

\[M = 81 \]
\[K = 77 \]
\[\alpha = 0.24 \]

User rates: \[\approx 2\text{-PSK} \]

Observation

Lower EE than with ZF

Also Massive MIMO setup

Low rates

Global Optimum:

\[M = 81, \quad K = 77 \]

EE = 9.86 Mbit/J
Multi-Cell Scenarios and Imperfect Channel Knowledge

- Limitations in Previous Analysis
 - Perfect channel knowledge
 - No interference from other cells

- Consider a Symmetric Multi-Cell Scenario:

<table>
<thead>
<tr>
<th>Cluster 1</th>
<th>Cluster 2</th>
<th>Cluster 1</th>
<th>Cluster 2</th>
<th>Cluster 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster 3</td>
<td>Cluster 4</td>
<td>Cluster 3</td>
<td>Cluster 4</td>
<td>Cluster 3</td>
</tr>
<tr>
<td>Cluster 1</td>
<td>Cluster 2</td>
<td>Cell under study (Cluster 1)</td>
<td>Cluster 2</td>
<td>Cluster 1</td>
</tr>
<tr>
<td>Cluster 3</td>
<td>Cluster 4</td>
<td>Cluster 3</td>
<td>Cluster 4</td>
<td>Cluster 3</td>
</tr>
<tr>
<td>Cluster 1</td>
<td>Cluster 2</td>
<td>Cluster 1</td>
<td>Cluster 2</td>
<td>Cluster 1</td>
</tr>
</tbody>
</table>

Assumptions
All cells look the same → Jointly optimized
All cells transmit in parallel
Fractional pilot reuse: Divide cells into clusters
Uplink pilot length $\tau_{ul}K$ for $\tau_{ul} \in \{1,2,4\}$
Multi-Cell Scenarios and Imperfect Channel Knowledge (2)

- **Inter-Cell Interference**
 - $\lambda_{jl} = \text{Channel attenuation between a random user in cell } l \text{ and BS } j$
 - $J = \sum_{l \neq j} \mathbb{E}\left\{\frac{\lambda_{jl}}{\lambda_{jj}}\right\}$ is relative severity of inter-cell interference

Lemma (Achievable Rate)

Consider same transmit power as before: $P_{\text{trans}} = \alpha B \sigma^2 S \lambda K$

Achievable rate under ZF and pilot-based channel estimation:

$$R = B \log_2 \left(1 + \frac{\alpha(M - K) I_{PC}}{\alpha(M - K) I_{PC} + \left(1 + I_{PC} + \frac{1}{\alpha K \tau^{(ul)}}\right) (1 + \alpha K J) - \alpha K (1 + I_{PC}^2)} \right)$$

where $I_{PC} = \sum_{l \neq j \text{ only in cluster}} \mathbb{E}\left\{\frac{\lambda_{jl}}{\lambda_{jj}}\right\}$ and $I_{PC}^2 = \sum_{l \neq j \text{ only in cluster}} \mathbb{E}\left\{\left(\frac{\lambda_{jl}}{\lambda_{jj}}\right)^2\right\}$

Pilot contamination (PC) (Strong interference) \quad Intra/inter-cell interference (Weaker)
Multi-Cell Scenarios and Imperfect Channel Knowledge (3)

- Multi-Cell Rate Expression not Amenable for Analysis
 - No closed-form optimization in multi-cell case
 - Numerical analysis still possible

- Similarities and Differences
 - Power consumption is exactly the same
 - Rates are smaller: Upper limited by pilot contamination:
 \[R = B \log_2 \left(1 + \frac{\alpha (M-K)}{\alpha \alpha \tau \text{ul} + \frac{1}{\alpha K \text{ul}} (1+K+I_{PC}) + \frac{1}{\alpha K (1+I_{PC})} - \alpha K (1+I_{PC}^2)} \right) \leq B \log_2 \left(1 + \frac{1}{I_{PC}} \right) \]
 - Overly high rates not possible (but we didn’t get that...)
 - Clustering (fractional pilot reuse) might be good to reduce interference
Optimal Multi-Cell System Design: ZF Beamforming

Optimum

\[
M = 123 \\
K = 40 \\
\alpha = 0.28 \\
\tau^{(ul)} = 4
\]

User rates: \(
\approx 4\text{-QAM}
\)

Massive MIMO!

Many BS antennas

Note that \(M/K \approx 3\)

Global Optimum:

\[
M = 123, K = 40 \\
\text{EE} = 7.58 \text{ Mbit/J}
\]
Different Pilot Reuse Factors

Higher Pilot Reuse

Higher EE *and* rates!

Controlling inter-cell interference is very important!

Area Throughput

We only optimized EE

Achieved 6 Gbit/s/km² over 20 MHz bandwidth

METIS project mentions 100 Gbit/s/km² as 5G goal → Need higher bandwidth!
Energy Efficient to Use More Transmit Power?

- Recall from Theorem 2: Transmit power increases M
 - Figure shows EE-maximizing power for different M

Intuition: More Circuit Power \rightarrow Use More Transmit Power
- Different from $\frac{1}{\sqrt{M}}$ scaling laws in recent massive MIMO literature
- Power per antennas decreases, but only logarithmically
Summary

- **Optimization Results**
 - EE is a quasi-concave function of \((M, K, \alpha)\)
 - Closed-form optimal \(M, K, \) or \(\alpha\) for single-cell
 - Alternating optimization algorithm

<table>
<thead>
<tr>
<th>Increases with</th>
<th>Decreases with</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antennas (M)</td>
<td>Power (\alpha), coverage area (S_\lambda), and (M)-independent circuit power</td>
</tr>
<tr>
<td>Users (K)</td>
<td>Fixed circuit power (C_{0,0}) and coverage area (S_\lambda)</td>
</tr>
<tr>
<td>Transmit power (\alpha B \sigma^2 S_\lambda K)</td>
<td>Circuit power, coverage area (S_\lambda), antennas (M), and users (K)</td>
</tr>
</tbody>
</table>

Reveals how variables are connected

Large Cell
More antennas, users, RF power

Massive MIMO
Appears Naturally
Fractional pilot reuse important!

More Circuit Power
Use more transmit power

Limits of \(M, K\)
Circuit power that scales with \(M, K\)

Simulations
Depends on parameters
Download Matlab code to try other values!
Part 2

Questions?
Part 3

Massive MIMO
What is Massive MIMO?

- New Network Architecture
 - Use large arrays at BSs; e.g., $M = 123$ antennas, $K = 40$ users
 - Key: Excessive number of antennas, $M \gg K$
 - Very narrow beamforming
 - Little interference leakage

2013 IEEE Marconi Prize Paper Award

Analytic assumption: $M \to \infty$
What is the Key Difference?

• Number of Antennas?
 - 3G/UMTS: 3 sectors x 20 element-arrays = 60 antennas
 - 4G/LTE-A: 4-MIMO x 60 = 240 antennas

• We Already have Many Antennas!

Massive MIMO Characteristics

- Active antennas: Many antenna ports
- Coherent flexible beamforming
- Multi-user MIMO with many users

Image source: gigaom.com

Typical vertical array:
10 antennas x 2 polarizations
Only 1-2 antenna ports

Image source: gigaom.com

3 sectors, 4 vertical arrays per sector
• When to Deploy Massive MIMO?
 - Achieve high energy-efficiency!
 - Improve wide-area coverage
 - Special super-dense scenarios

• Co-located Deployment
 - 1D, 2D, or 3D arrays
 - One or multiple sectors

• Distributed Deployment
 - Remote radio heads
 - Cloud RAN
Original Motivation: Asymptotic Channel Orthogonality

- **Example: Uplink Transmission**
 - Two users channels: $\mathbf{h}_1, \mathbf{h}_2 \sim CN(\mathbf{0}, \mathbf{I}_M)$
 - Signals: $s_1, s_2 \sim CN(0, P)$
 - Noise: $\mathbf{n} \sim CN(\mathbf{0}, \mathbf{I}_M)$
 - Received: $\mathbf{y} = \mathbf{h}_1s_1 + \mathbf{h}_2s_2 + \mathbf{n}$

- **Linear Processing for User 1:** $\tilde{y}_1 = \mathbf{g}_1^H \mathbf{y} = \mathbf{g}_1^H \mathbf{h}_1s_1 + \mathbf{g}_1^H \mathbf{h}_2s_2 + \mathbf{g}_1^H \mathbf{n}$
 - Matched filter: $\mathbf{g}_1 = \frac{1}{M} \mathbf{h}_1$
 - Signal remains: $\mathbf{g}_1^H \mathbf{h}_1 = \frac{1}{M}||\mathbf{h}_1||^2 \xrightarrow{M \to \infty} E[|h_{11}|^2] = 1$
 - Interference vanishes: $\mathbf{g}_1^H \mathbf{h}_2 = \frac{1}{M} \mathbf{h}_1^H \mathbf{h}_2 \xrightarrow{M \to \infty} E[h_{11}^H h_{21}] = 0$
 - Noise vanishes: $\mathbf{g}_1^H \mathbf{n} = \frac{1}{M} \mathbf{h}_1^H \mathbf{n} \xrightarrow{M \to \infty} E[h_{11}^H n_1] = 0$

Asymptotically noise/interference-free communication: $\tilde{y}_1 \xrightarrow{M \to \infty} s_1$
Does This Hold for Practical Channels?

• Initial Measurements: Show similar results

Achievable Rates
Only 10-20% lower than with i.i.d. channels

Main Research Challenges

• Acquisition of Channel State Information
 - Finite coherence block $U \in [100, 10000]$
 - Only $\leq U$ unique pilots \rightarrow Reuse across cells
 - BS cannot tell difference between users
 - Pilot contamination: Correlated estimates
 - This interference doesn’t vanish as $M \rightarrow \infty$

• Not a New Phenomenon
 - Pilot contamination always an issue
 - More pronounced when M and K are large

• Current Solutions:
 - Simple: Fractional pilot reuse
 - Advanced: Exploit spatial correlation
Main Research Challenges (2)

- **Frequency Division Duplex (FDD)**
 - Many systems and spectrum bands are dedicated to FDD
 - Cannot rely on channel reciprocity → Is estimation overhead too large?

- **Computational Complexity**
 - ZF performs better than MRC/MRT but has higher complexity
 - Can complexity be reduced with retained performance?

- **Circuit Design and Hardware Implementation**
 - Cost and power increase in massive MIMO, but as N, \sqrt{N}, or slower?
 - Can waveforms be design to allow more efficient hardware?
MAMMOET Project

- FP7 MAMMOET project (Massive MIMO for Efficient Transmission)
 - Bridge gap between “theoretical and conceptual” massive MIMO
 - Develop: Flexible, effective and efficient solutions

- **WP4** Validation and proof-of-concept
- **WP2** Efficient FE solutions (IC solutions, Comp/Calibration)
- **WP3** Baseband Solutions (Algorithms, Architectures & Design)
- **WP1** System approach, scenarios and requirements

[Logos of participating institutions]
Part 3

Questions?
Part 4

Multi-Objective Network Optimization
Optimize more than Energy-Efficiency

• Recall: Many Metrics in 5G Discussions
 - Average rate (Mbit/s/active user)
 - Average area rate (Mbit/s/km²)
 - Energy-efficiency (Mbit/Joule)
 - Active devices (per km²)
 - Delay constraints (ms)

• So Far: Only cared about EE
 - Ignored all other metrics

Optimize Multiple Metrics

We want efficient operation w.r.t. all objectives

Is this possible?
For all at the same time?
Basic Assumptions: Multi-Objective Optimization

• Consider N Performance Metrics
 - Objectives to be maximized
 - Notation: $g_1(x), g_2(x), \ldots, g_N(x)$
 - Example: individual user rates, area rates, energy-efficiency

• Optimization Resources
 - Resource bundle: \mathcal{X}
 - Example: power, resource blocks, network architecture, antennas, users
 - Feasible allocation: $x \in \mathcal{X}$
Single or Multiple Performance Metrics

• Conventional Optimization
 - Pick one prime metric: $g_1(x)$
 - Turn $g_1(x), g_2(x), ..., g_N(x)$ into constraints

 - Optimization problem:
 \[
 \begin{align*}
 & \text{maximize} \quad g_1(x) \\
 & \text{subject to} \quad x \in \mathcal{X}, \quad g_2(x) \geq C_2, ..., g_N(x) \geq C_N.
 \end{align*}
 \]

 - Solution: A scalar number

 - Cons: Is there a prime metric? How to select constraints?

• Multi-Objective Optimization
 - Consider all N metrics
 - No order or preconceptions!

 - Optimization problem:
 \[
 \begin{align*}
 & \text{maximize} \quad [g_1(x), g_2(x), ..., g_N(x)] \\
 & \text{subject to} \quad x \in \mathcal{X}.
 \end{align*}
 \]

 Solution: A set
 Pareto Boundary
 Improve a metric \rightarrow Degrading another metric
Why Multi-Objective Optimization?

• Study Tradeoffs Between Metrics
 - When are metrics aligned or conflicting?
 - Common in engineering and economics – new in communication theory

A Posteriori Approach
Generate region (computationally demanding!)
Look at region and select operating point

![Diagram showing highly conflicting and relatively aligned regions](image)
A Priori Approach

- No Objectively Optimal Solution
 - Utopia point outside of region \rightarrow Only subjectively “good” solutions exist

- System Designer Selects Utility Function $f : \mathbb{R}^N \rightarrow \mathbb{R}$
 - Describes subjective preference (larger is better)

- Examples: Sum performance: $f(g) = \sum_k g_k$
 - Proportional fairness: $f(g) = \prod_k g_k$
 - Harmonic mean: $f(g) = K_r (\sum_k g_k^{-1})^{-1}$
 - Max-min fairness: $f(g) = \min_k g_k$

We obtain a simplified problem:

\[
\begin{align*}
\text{maximize} & \quad f(g_1(x), g_2(x), \ldots, g_N(x)) \\
\text{subject to} & \quad x \in \mathcal{X}
\end{align*}
\]

- Solution: A scalar number (Gives one Pareto optimal point)
- Takes all metrics into account!
Example: Optimization of 5G Networks

- **Design Cellular Network**
 - Symmetric system
 - 16 base stations (BSs)
 - Select:
 - $M = \# \text{ BS antennas}$
 - $K = \# \text{ users}$
 - $P = \text{ power/antenna}$

- Resource bundle:

$$\mathcal{X} = \begin{cases}
[K \ M \ P]^T : &
1 \leq K \leq \frac{M}{2}, \\
2 \leq M \leq M_{\max}, \\
0 \leq P \leq M P_{\max}
\end{cases}$$

250 meters

M transmit antennas

K uniformly distributed users

500

20 W
Example: Optimization of 5G Networks (2)

- **Downlink Multi-Cell Transmission**
 - Each BS serves only its own K users
 - Coherence block length: U
 - BS knows channels within the cell (cost: K/U)
 - ZF beamforming: no intra-cell interference
 - Interference leaks between cells

- **Average User Rate**

$$R_{\text{average}} = B \left(1 - \frac{K}{U}\right) \log_2 \left(1 + \frac{P}{K} \frac{(M - K)}{S \lambda \sigma^2 + J}\right)$$

- **Power/user**
- **Array gain**
- **Bandwidth (10 MHz)**
- **CSI estimation overhead ($U = 1000$)**
- **Noise / pathloss ($1.72 \cdot 10^{-4}$)**
- **Relative inter-cell interference (0.54)**
Example: Optimization of 5G Networks (3)

• What Consumes Power?
 - Transmit power (+ losses in amplifiers)
 - Circuits attached to each antenna
 - Baseband signal processing
 - Fixed load-independent power

• Total Power Consumption

\[P_{\text{total}} = \frac{P_{\text{trans}}}{\eta} + C_{0,0} + C_{1,0}K + C_{0,1}M + \frac{B C_{\text{beamforming}}}{U L_{\text{BS}}} \]

- Amplifier efficiency (0.31)
- Fixed power (10 W)
- Circuit power per user (0.3 W)
- Circuit power per antenna (1 W)
- Computing ZF beamforming (\(2.3 \cdot 10^{-6} \cdot MK^2\))
Example: Results

3 Objectives

1. Average user rate
 \[g_1(x) = R_{\text{average}} \] [bit/s/user]

2. Total area rate
 \[g_2(x) = \frac{K}{A} R_{\text{average}} \] [bit/s/km²]

3. Energy-efficiency
 \[g_3(x) = \frac{K R_{\text{average}}}{P_{\text{total}}} \] [bit/J]

Observations

Area and user rates are conflicting objectives

Only energy efficient at high area rates

Different number of users
Example: Results (2)

- Energy-Efficiency vs. User Rates
 - Utility functions normalized by utopia point

Observations

Aligned for small user rates

Conflicting for high user rates
Part 4

Questions?
Summary

• What if a Cellular Network is Designed for High Energy-Efficiency?
 - Energy-efficiency [bit/Joule] = $\frac{\text{Average Sum Rate [bit/s/cell]}}{\text{Power Consumption [Joule/s/cell]}}$
 - Necessary: Accurate rate expressions and power consumption
 - Design parameters: Number of users, antennas, and transmit power

• Analytical and Numerical Results
 - Reveals interplay between system parameters
 - Shows that massive MIMO is the energy-efficient solution

• Main Properties of massive MIMO
 - Arrays with many active antennas and relatively many users

• Multi-Objective Optimization
 - Framework to jointly optimize energy-efficiency and other 5G metrics
References

QUESTIONS?

Papers, Presentations, and Simulation Code
All Available on my Homepage:
http://www.commsys.isy.liu.se/en/staff/emibj29