Massive MIMO
Fundamentals and State-of-the-Art

Emil Björnson, Jakob Hoydis, Luca Sanguinetti
Linköping University, Sweden; emil.bjornson@liu.se
Bell Labs, Nokia, France; jakob.hoydis@nokia.com
University of Pisa, Italy; luca.sanguinetti@unipi.it

WCNC 2018, Barcelona, Spain, April 15, 2018
Part I

- Definition of Massive MIMO
- Basic Channel and Signal Modeling
- Channel Estimation
- Spectral Efficiency in Uplink and Downlink

Coffee break

Part II

- Spectral Efficiency: Asymptotic Analysis
- Practical Deployment Considerations
- Open Problems

https://massivemimobook.com

- Monograph of 517 pages intended for PhD students and researchers;
- Printed books can be purchased, e-book freely available;
- Matlab code available online.

Additional material:

- Massive MIMO blog: http://massive-mimo.net/
Introduction
Definition (Cellular networks — A major breakthrough)

A cellular network consists of a set of base stations (BSs) and a set of user equipments (UEs). Each UE is connected to one of the BS, which provides service to it.

- **Downlink (DL)** refers to signals sent from the BS to its UEs
- **Uplink (UL)** refers to signals sent from the UE to its respective BS
Area Throughput

Definition (Area throughput)

The area throughput of a cellular network is measured in bit/s/km\(^2\).

\[
\text{Area throughput} = B \, [\text{Hz}] \cdot D \, [\text{cells/km}^2] \cdot SE \, [\text{bit/s/Hz/cell}]
\]

where \(B\) is the bandwidth, \(D\) is the average cell density, and \(SE\) is the per-cell spectral efficiency (SE). The SE is the amount of information transferred per second over a unit bandwidth.
How to Improve the Area Throughput?

(a) Equal improvement

(b) Improving some factors more than others

Next generation networks: 1000× higher area throughput [Qua12]

- Three main ways to achieve this:
 1. Allocate more bandwidth
 2. Densify the network by adding more BSs
 3. Improve the SE per cell

- Although there is an inherent dependence between the three factors, we can treat them as independent in a first-order approximation
Two Network Tiers

Definition (Hotspot tier)
BS offering high throughput in small local areas to a few UE.
- Very dense deployment possible
- Much bandwidth exist (mmWave)
- SE less important

Definition (Coverage tier)
BS providing wide-area coverage and mobility support to many UEs.
- Limited density and bandwidth
- Important to improve SE

Coverage tier is the most challenging – will be our focus
Nyquist-Shannon sampling theorem: A signal of bandwidth B Hz is determined by $2B$ real-valued equal-spaced samples per second.

- B complex-valued samples per second is the more natural quantity for the complex-baseband representation of the signal.

Definition (Spectral efficiency)

The *spectral efficiency* (SE) of an encoding/decoding scheme is a number of bits of information, per complex-valued sample, that can be reliably\(^1\) transmitted over the channel under consideration.

Equivalent units:

- bit per complex-valued sample
- bit per second per Hertz (bit/s/Hz)

\(^1\text{With arbitrarily low error probability for sufficiently long signals}\)
How to Improve Spectral Efficiency?

Two-cell Wyner model:
- Intra-cell signal-to-noise ratio (SNR): SNR.
- Inter-cell interference is $\bar{\beta} \leq 1$ weaker than intra-cell channels.
- M antennas per BS, K single-antenna UEs per cell

Sum SE with i.i.d. Rayleigh fading and Perfect Channel Knowledge

An achievable UL sum SE [bit/s/Hz/cell] is

$$SE = K \log_2 \left(1 + \frac{M - 1}{(K - 1) + K\bar{\beta} + \frac{1}{\text{SNR}}} \right).$$

- Grows logarithmically with M
- Pre-log grows linearly with K, but SINR decreases as $1/K$
- Avoid SINR reduction by increasing M, K jointly!
Canonical Definition and Notation
Definition (Canonical Massive MIMO Network)

A canonical Massive MIMO network is a multi-carrier cellular network with L cells that operate according to a synchronous TDD protocol.\(^2\)

- BS j is equipped with $M_j \gg 1$ antennas, to achieve channel hardening
- BS j communicates with K_j single-antenna UEs on each time/frequency sample, where $M_j/K_j > 1$
- Each BS operates individually and processes its signals using linear transmit precoding and linear receive combining

\(^2\)A synchronous TDD protocol refers to a protocol in which UL and DL transmissions within different cells are synchronized.
Channel Notation

Numbering:

- L cells and BSs, numbered from 1 to L
- K_l UEs in cell l, numbered from 1 to K_l

Channel notation:

h_{lk}^{ij}

- Example: Channel between UE k in cell l and BS j:

 h_{lk}^{ij}

- This is an $M_j \times 1$ vector
Examples of Antenna Array Geometries

a) linear vertical; b) linear horizontal; c) planar; d) cylindrical.

- **Deployment strategies**
 - One or multiple cell sectors
 - One or multiple arrays per cell

- **Massive in numbers, not in size**
 - BSs in LTE have hundreds of radiating elements, but few RF chains
 - Novelty: Every radiating element is an antenna with an RF chain
CSI, Coherence block, TDD...
Example: Uplink Channel Estimation

- The UE sends a single pilot signal $s \in \mathbb{C}$ that is known at the BS
 \[y = hs + n \]

- Simple estimate of h:
 \[\hat{h} = \frac{s^*}{|s|^2}y \]

In the uplink, the channel vector to an unlimited number of antennas can be learned from a single pilot transmission!

If there are K single-antenna UEs, then K pilot signals are required!
Example: Downlink Channel Estimation

- The BS sends a known pilot signal s subsequently from each antenna
- Received signal at the UE:
 \[y_m = h_m s + n_m \quad m = 1, \ldots, M \]
- Simple estimate of h_m:
 \[\hat{h}_m = \frac{s^*}{|s|^2} y_m \]
- The UE feeds \hat{h} back to the BS 3

\[M \] pilot transmissions (plus feedback) are needed to estimate the downlink channel!

3Generally, a quantized version of \hat{h} is fed back which increases the estimation error.
Definition (Coherence block)
A coherence block consists of a number of subcarriers and time samples over which the channel response is approximately constant and flat-fading. If the coherence bandwidth is B_c and the coherence time is T_c, each coherence block contains $\tau_c = B_c T_c$ complex-valued samples.

- T_c and B_c depend on carrier frequency, UE speed, delay spread, etc.
- Typical values for T_c and B_c are in the range from 1–50 ms and 0.2–1 MHz: a coherence block contains 200–50000 samples.

Different ways to assign UL and DL to coherence blocks
Overhead of CSI Acquisition

- Time-division duplex (TDD) — Overhead per block: K pilots
 - UL/DL channels are reciprocal
 - Only BS needs to know full channels

- Frequency-division duplex (FDD) — Overhead per block: $M + \frac{K}{2}$
 - K pilots + M feedback in UL
 - M pilots in DL
Illustration of operating points \((M, K)\) supported by using \(\tau_p = 20\) pilots, for different TDD and FDD protocols. The shaded area corresponds to operating points that are preferable in SDMA systems.

Only TDD and the resulting channel reciprocity allow for very large \(M\)!
Spatial Channel Correlation
What is Spatial Channel Correlation?

Definition (Spatial Channel Correlation)

A fading channel \(h \in \mathbb{C}^M \) is \textit{spatially uncorrelated} if the channel gain \(\|h\|^2 \) and the channel direction \(h/\|h\| \) are independent random variables, and the channel direction is uniformly distributed over the unit-sphere in \(\mathbb{C}^M \). The channel is otherwise \textit{spatially correlated}.

Example of uncorrelated channel:
- Uncorrelated Rayleigh fading: \(h \sim \mathcal{N}_C(0, \beta I) \)
- All eigenvalues of correlation matrix are equal

Example of correlated channel:
- Any model with eigenvalue variations in the correlation matrix
 - Some spatial directions are statistically more likely to contain strong signal components than others
- Correlated Rayleigh fading: \(h \sim \mathcal{N}_C(0, R) \)
- More correlation: Larger eigenvalue variations
The Correlated Rayleigh Fading Channel Model

<table>
<thead>
<tr>
<th>Definition (Correlated Rayleigh Fading)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under the correlated Rayleigh fading channel model, the channel vectors (h_{lk}^j \in \mathbb{C}^{M_j}) are distributed as (h_{lk}^j \sim \mathcal{N}\mathbb{C} \left(0{M_j}, R_{lk}^j \right)), where (R_{lk}^j \in \mathbb{C}^{M_j \times M_j}) is the spatial channel correlation matrix.</td>
</tr>
</tbody>
</table>

- \(h_{lk}^j \) takes independent realizations in every coherence block
- Variations in \(h_{lk}^j \) describe microscopic effects due to movement
- \(R_{lk}^j \) is assumed to be known\(^4\) at BS \(j \)
- The eigenvalues and eigenvectors of \(R_{lk}^j \) determine the spatial channel correlation of \(h_{lk}^j \)
- Average channel gain is \(\beta_{lk}^j = \frac{1}{M_j} \text{tr}(R_{lk}^j) \) per antenna

\(^4\)Estimation of \(R_{lk}^j \) is a very important topic, but will not be covered in this course.
Local Scattering Correlation Model

- NLoS channel between a UE and a uniform linear array (ULA)
- Nominal angle φ

\[
[R]_{l,m} = \beta \int e^{2\pi j d_{H}(l-m)} \sin(\bar{\varphi}) f(\bar{\varphi}) d\bar{\varphi} , 1 \leq l, m \leq M
\]

- Can be numerically computed for any angle distribution $f(\bar{\varphi})$

- Local scattering model: $\bar{\varphi} = \varphi + \Delta$ with only small Δ.
- Several distributions of Δ in the literature:
 - $\Delta \sim \mathcal{N}(0, \sigma_{\varphi}^2)$ (Normal distribution)
 - $\Delta \sim \text{Lap}(0, \sigma_{\varphi}/\sqrt{2})$ (Laplace distribution)
 - $\Delta \sim U[-\sqrt{3}\sigma_{\varphi}, \sqrt{3}\sigma_{\varphi}]$ (Uniform distribution)
Local Scattering Correlation Model: Eigenvalue Distribution

Reference: Uncorrelated fading

$M = 100, \varphi = 30^\circ, \sigma_\varphi = 10^\circ$
Channel Hardening and Favorable Propagation
Channel Hardening (1/2)

Definition (Channel hardening)

A propagation channel h_{jk}^j provides asymptotic channel hardening if

$$\frac{\|h_{jk}^j\|^2}{E\{\|h_{jk}^j\|^2\}} \to 1 \quad \text{almost surely as } M_j \to \infty.$$

- Channel gain $\|h_{jk}^j\|^2$ is close to its mean value $E\{\|h_{jk}^j\|^2\}$
 - Implies that fading has little impact on communication performance
 - Does not imply that $\|h_{jk}^j\|^2$ becomes deterministic
- For uncorrelated fading, this follows from the law of large numbers
- For finite M_j and correlated fading, we want a small value of

$$\nabla \left\{ \frac{\|h_{jk}^j\|^2}{E\{\|h_{jk}^j\|^2\}} \right\} \approx \frac{\text{tr}((R_{jk}^j)^2)}{(M_j \beta_{lk}^j)^2} \quad (2.17)$$
Channel Hardening (2/2)

Variance of the channel hardening metric

Uncorrelated fading compared with local scattering model ($\varphi = 30^\circ$)

Spatial correlation leads to less channel hardening
Definition (Favorable propagation)

The pair of channels h_{li}^j and h_{jk}^j to BS j provide asymptotically favorable propagation if

$$
\frac{(h_{li}^j)^{\mathsf{H}} h_{jk}^j}{\sqrt{\mathbb{E}\{\|h_{li}^j\|^2\}\mathbb{E}\{\|h_{jk}^j\|^2\}}} \to 0 \quad \text{almost surely as } M_j \to \infty.
$$

- Channel directions become orthogonal asymptotically
 - Implies less interference between the UEs
 - Does not imply that $(h_{li}^j)^{\mathsf{H}} h_{jk}^j \to 0$
- For uncorrelated fading, this follows from the law of large numbers
- For finite M_j and correlated fading, we want a small value of

$$
\mathbb{V} \left\{ \frac{(h_{li}^j)^{\mathsf{H}} h_{jk}^j}{\sqrt{\mathbb{E}\{\|h_{li}^j\|^2\}\mathbb{E}\{\|h_{jk}^j\|^2\}}} \right\} = \frac{\text{tr} \left(R_{li}^j R_{jk}^j \right)}{M_j^2 \beta_{li}^j \beta_{jk}^j} \quad (2.19)
$$
Variance of the favorable propagation metric
Uncorrelated fading compared with local scattering model (desired UE: $\varphi = 30^\circ$)

Depends strongly on the UEs’ correlation matrices
The channel hardening and favorable propagation phenomena have been validated experimentally for practical antenna numbers [GERT11, HHWtB12]...

- Physics prevent us from letting $M \to \infty$ and collecting more energy than was transmitted.
- This is not an issue when we deal with hundreds or thousands of antennas, since a “small” channel gain of -60 dB in cellular communications requires $M = 10^6$ to collect all power.

In conclusion...

The limit $M \to \infty$ is not physically achievable, but it is an analytical tool to explain what happens at practically large antenna numbers.
Five Differences Between Multiuser MIMO and Massive MIMO

- Massive MIMO is a refined form of multiuser MIMO
- Has its roots in the 1980s [Win87] and 1990s [SBEM90, AMVW91].

<table>
<thead>
<tr>
<th></th>
<th>Multiuser MIMO</th>
<th>Massive MIMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_j and K_j</td>
<td>$M \approx K$ and both are small (e.g., < 10)</td>
<td>$M \gg K$ and typically large (e.g., $M = 100$, $K = 20$).</td>
</tr>
<tr>
<td>Duplexing</td>
<td>Designed to work in both TDD and FDD</td>
<td>Designed for TDD and exploits channel reciprocity</td>
</tr>
<tr>
<td>CSI acquisition</td>
<td>Mainly based on codebooks with set of predefined angular beams</td>
<td>Based on sending uplink pilots and exploiting channel reciprocity</td>
</tr>
<tr>
<td>Link quality</td>
<td>Variates rapidly due to frequency-selective and small-scale fading</td>
<td>Small variations over time and frequency, thanks to channel hardening</td>
</tr>
<tr>
<td>Resource allocation</td>
<td>Changes rapidly due to link quality variations</td>
<td>Can be planned since the link quality varies slowly</td>
</tr>
</tbody>
</table>
Uplink System Model
Uplink Transmission

Received UL signal $y_j \in \mathbb{C}^{M_j}$ at BS j:

$$y_j = \sum_{k=1}^{K_j} h_{jk}^j s_{jk} + \sum_{l=1}^{L} \sum_{l \neq j}^{K_l} h_{li}^j s_{li} + n_j$$

- **Desired signals**
- **Inter-cell interference**
- **Noise**

- **UL signal of UE k in cell l**: $s_{lk} \in \mathbb{C}$ with $p_{lk} = \mathbb{E}\{|s_{lk}|^2\}$, irrespective of whether it is a random payload data signal $s_{lk} \sim \mathcal{N}(0, p_{lk})$ or a deterministic pilot signal with $p_{lk} = |s_{lk}|^2$
- **Receiver noise**: $n_j \sim \mathcal{N}_C(0_{M_j}, \sigma_{UL}^2 I_{M_j})$
During payload transmission, the BS in cell j uses the receive combining vector $v_{jk} \in \mathbb{C}^{M_j}$ to separate the signal from its kth desired UE from the interference as

$$v_{jk}^H y_j = v_{jk}^H h_{jk}^j s_{jk} + \sum_{i=1}^{K_j} v_{jk}^H h_{ji}^j s_{ji} + \sum_{l=1}^{L} \sum_{i=1}^{K_l} v_{jk}^H h_{li}^j s_{li} + v_{jk}^H n_j$$

- Desired signal
- Intra-cell signals
- Inter-cell interference
- Noise

The selection of combining (and precoding) vectors, based on estimated channels, and the corresponding SEs will be discussed in depth later.

5Linear receive combining is also known as linear detection
Received Uplink Signal During Pilot Transmission

Coherence time T_c

UL data τ_u

DL data τ_d

UL pilots: τ_p

Coherence bandwidth B_c

Received UL signal $Y_j^p \in \mathbb{C}^{M_j \times \tau_p}$ at BS j:

$$
Y_j^p = \sum_{k=1}^{K_j} \sqrt{p_{jk}} h_{jk}^j \phi_{jk}^T + \sum_{l=1}^{L} \sum_{i=1 \ l \neq j}^{K_l} \sqrt{p_{li}} h_{li}^j \phi_{li}^T + N_j^p
$$

- Desired pilots
- Inter-cell pilots
- Noise

- UE k in cell j transmits the *pilot sequence* $\phi_{jk} \in \mathbb{C}^{\tau_p}$
- $\|\phi_{jk}\|^2 = \phi_{jk}^H \phi_{jk} = \tau_p$ (scaled by UE’s transmit power as $\sqrt{p_{jk}}$)
- $N_j^p \in \mathbb{C}^{M_j \times \tau_p}$ has i.i.d. $\mathcal{N}_\mathbb{C}(0, \sigma_{UL}^2)$ elements
Pilot Book and Pilot Allocation

- BS \(j \) correlates \(Y^p_j \) with \(\phi_{jk} \) to estimate \(h^j_{jk} \).
- The network uses \(\tau_p \) mutually orthogonal UL pilot sequences
- These sequences form the pilot book \(\Phi^u \in \mathbb{C}^{\tau_p \times \tau_p} : \)
 \[
 (\Phi^u)^H \Phi^u = \tau_p I_{\tau_p}
 \]
- If \(\tau_p \geq \max_l K_l \), each BS can allocate a different pilot to each UE
- Define the set of UEs utilizing the same pilot as UE \(k \) in cell \(j \):
 \[
 P_{jk} = \{(l, i) : \phi_{li} = \phi_{jk}, \ l = 1, \ldots, L, i = 1, \ldots, K_l\}
 \]

This leads to the simplified expression:

\[
Y^p_{jjk} = Y^p_j \phi^*_{jk} = \sqrt{p_{jk}} \tau_p h^j_{jk} + \sum_{(l, i) \in P_{jk} \setminus (j, k)} \sqrt{p_{li}} \tau_p h^j_{li} + N^p_j \phi^*_{jk}
\]

where \(N^p_j \phi^*_{jk} \sim \mathcal{N}_C(0_{M_j}, \sigma_{UL}^2 \tau_p I_{M_j}) \) since \(\phi_{jk} \) is deterministic
MMSE Channel Estimation
Theorem

The MMSE estimate of h_{li}^j based on the observation Y_p^j at BS j is

$$\hat{h}_{li}^j = \sqrt{p_{li}} R_{li}^j \Psi_{li}^j y_{jli}^p$$

where $\Psi_{li}^j = \left(\sum_{(l',i') \in P_{li}} p_{l'i'} \tau_p R_{l'i'}^j + \sigma_{UL}^2 I_{M_j} \right)^{-1}$.

The estimation error $\tilde{h}_{li}^j = h_{li}^j - \hat{h}_{li}^j$ has the correlation matrix

$$C_{li}^j = E \{ \tilde{h}_{li}^j (\tilde{h}_{li}^j)^H \} = R_{li}^j - p_{li} \tau_p R_{li}^j \Psi_{li}^j R_{li}^j.$$

Corollary

The estimate \hat{h}_{li}^j and the estimation error \tilde{h}_{li}^j are independent random variables, distributed as follows:

$$\hat{h}_{li}^j \sim \mathcal{N}(0_{M_j}, R_{li}^j - C_{li}^j), \quad \tilde{h}_{li}^j \sim \mathcal{N}(0_{M_j}, C_{li}^j).$$
Impact of SNR on Estimation Quality

- One UE with effective SNR $p_{jk} \tau_p \beta_{jk} / \sigma_{UL}^2$
 - Processing gain: SNR grows with τ_p
- Normalized MSE (NMSE): $\text{tr}(C_{jk}^j) / \text{tr}(R_{jk}^j) \in [0, 1]$
- Local scattering channel model, Gaussian distribution ($\sigma_\varphi = 10^\circ$)
 - NMSE decays with M: Easier to estimate correlated channels
Example of Interfering Pilot Transmissions

\[y_{jk}^p = \sqrt{p_{jk}} \tau_p h_{jk}^j + \sqrt{p_{lk}} \tau_p h_{lk}^l + N_{jk}^p \phi_{jk}^* \]

- **Intended pilot transmission**
- **Interfering pilot transmission**
Pilot Contamination

Corollary

Consider UE \(k \) in cell \(j \) and UE \(i \) in cell \(l \). It holds that

\[
\frac{\mathbb{E}\{(\hat{h}_{li}^j)^H \hat{h}_{jk}^j}\}}{\sqrt{\mathbb{E}\{\|\hat{h}_{jk}^j\|^2\}\mathbb{E}\{\|\hat{h}_{li}^j\|^2\}}} = \begin{cases}
\frac{\text{tr}(R_{li}^j R_{jk}^j \Psi_{li}^j)}{\sqrt{\text{tr}(R_{jk}^j R_{jk}^j \Psi_{li}^j) \text{tr}(R_{li}^j R_{li}^j \Psi_{li}^j)}} & (l, i) \in \mathcal{P}_{jk} \\
0 & (l, i) \notin \mathcal{P}_{jk}
\end{cases}
\]

despite the fact that \(\mathbb{E}\{(h_{li}^j)^H h_{jk}^j\}/M_j = 0 \) for all UE combinations with \((l, i) \neq (j, k) \).

- This corollary describes the phenomenon of *pilot contamination*
- Interfering UEs reduce estimation quality, but also *makes channel estimates statistically dependent*, despite the independent channels
- Less contamination if \(R_{li}^j R_{jk}^j \) is small
 - Large pathloss difference or different supports.
- Pilot contamination makes it harder for the BS to mitigate interference between UEs that use the same pilot sequence.
Pilot Contamination: Numerical Results

- Two UEs using the same pilot sequence
 - Desired UE has nominal angle of 30°
 - Nominal angle of undesired UE varies from −180° to 180°
 - Local scattering channel model with Gaussian angular distribution
 - 10 dB SNR to desired UE, 0 dB to interfering UE
Pilot Contamination: Additional Remarks

- Pilot contamination exists because of the practical necessity to reuse the time-frequency resources across cells.
- It is often described as a main characteristic of Massive MIMO [Mar10, GJ11, JAMV11], but it is not unique for Massive MIMO.

Pilot contamination has a greater impact on Massive MIMO than on conventional systems because the aggressive spatial multiplexing requires more frequent spatial reuse of pilot sequences.

- The eigenstructure of the spatial correlation matrices determines the strength of the pilot contamination.
- Pilot sequence assignment to UEs with very “different” correlation matrices can hence help reduce this effect, e.g., [HCPR12, YGFL13].
Channel Estimation: Key Points

- Channel estimation based on **UL pilot sequences** is key
 - One orthogonal sequence per UE in the cell
 - Effective SNR is proportional to pilot length

- **MMSE estimation** uses channel statistics to obtain good estimates
 - Alternatives: Element-wise MMSE, least-square, data-aided

- Limited channel coherence makes **pilot reuse** across cells necessary:
 - Inter-cell interference **reduces estimation quality**
 - Channel estimates of UEs that use the same pilot are correlated; phenomenon called **pilot contamination**
 - Correlation small for UEs with sufficiently different correlation matrices; differences in large pathloss or spatial characteristics
 - Pilot contamination lead to **coherent interference**, hard to mitigate
Uplink Spectral Efficiency
Received Uplink Signal with Estimated Channels

The BS in cell j decodes UE k’s signal s_{jk} based on:

$$
v_{jk}^H y_j = v_{jk}^H h_{jk}^j s_{jk} + \sum_{l=1}^{L} \sum_{i=1}^{K_l} \left(v_{jk}^H h_{li}^j s_{li} + v_{jk}^H n_j \right)$$

\[\text{Interference plus noise}\]

Using the MMSE estimator, all channels can be decomposed as

$$h_{li}^j = \hat{h}_{li}^j + \tilde{h}_{li}^j$$

\[\text{Known} \quad \text{Unknown}\]

Thus,

$$v_{jk}^H y_j = \underbrace{v_{jk}^H \hat{h}_{jk}^j s_{jk}}_{\text{Desired signal over known channel}} + \underbrace{\tilde{z}_{jk}}_{\text{Everything else}}$$
An Achievable Uplink Spectral Efficiency

Theorem

If MMSE channel estimation is used, then the UL channel capacity of UE \(k \) in cell \(j \) is lower bounded by \(SE_{jk}^{UL} \) [bit/s/Hz] given by

\[
SE_{jk}^{UL} = \frac{\tau_u}{\tau_c} E \left\{ \log_2 \left(1 + \text{SINR}_{jk}^{UL} \right) \right\}
\]

with instantaneous SINR

\[
\text{SINR}_{jk}^{UL} = \frac{p_{jk} |v_{jk}^H \hat{h}_{jk}^j|^2}{\sum_{l=1}^{L} \sum_{i=1}^{K_l} p_{li} |v_{jk}^H \hat{h}_{li}^j|^2 + v_{jk}^H \left(\sum_{l=1}^{L} \sum_{i=1}^{K_l} p_{li} C_{li}^j + \sigma_{UL}^2 I_M j \right) v_{jk}}
\]

and where the expectation is with respect to the channel estimates.

- The prelog factor arises because only a fraction \(\frac{\tau_u}{\tau_c} \) of all samples are used for UL data transmission.
- The result holds for any receive combining vector \(v_{jk} \).
The Optimal Receive Combining Vector

Corollary: Multicell MMSE (M-MMSE) Combining Vector

\(\text{SINR}^{\text{UL}}_{jk} \) is maximized by the combining vector

\[
v_{jk} = p_{jk} \left(\sum_{l=1}^{L} \sum_{i=1}^{K_l} p_{li} \left(\hat{h}_{li}^j (\hat{h}_{li}^j)^H + C_{li}^j \right) + \sigma_{UL}^2 I_{M_j} \right)^{-1} \hat{h}_{jk}^j
\]

which leads to

\[
\text{SINR}^{\text{UL}}_{jk} = p_{jk} (\hat{h}_{jk}^j)^H \left(\sum_{l=1}^{L} \sum_{i=1}^{K_l} p_{li} \hat{h}_{li}^j (\hat{h}_{li}^j)^H + \sum_{l=1}^{L} \sum_{i=1}^{K_l} p_{li} C_{li}^j + \sigma_{UL}^2 I_{M_j} \right)^{-1} \hat{h}_{jk}^j.
\]

Remark

The M-MMSE combining vector minimizes the conditional MSE

\[
\mathbb{E} \left\{ |s_{jk} - v_{jk}^H y_j|^2 | \{ \hat{h}_{li}^j \} \right\}.
\]
Other Combining Schemes

\[V_{j}^{\text{MMSE}} = \left(\sum_{l=1}^{L} \hat{H}_{j}^{H} P_{l} (\hat{H}_{j}^{H})^{H} + \sum_{l=1}^{L} \sum_{i=1}^{K_{l}} p_{li} C_{ji}^{j} + \sigma_{UL}^{2} I_{M_{j}} \right)^{-1} \hat{H}_{j}^{H} P_{j} \]

Single-cell MMSE (S-MMSE):

\[V_{j}^{\text{S-MMSE}} = \left(\hat{H}_{j}^{H} P_{j} (\hat{H}_{j}^{H})^{H} + \sum_{i=1}^{K_{j}} p_{ji} C_{ji}^{j} + \sum_{l=1}^{L} \sum_{l \neq j}^{K_{l}} p_{li} R_{li}^{j} + \sigma_{UL}^{2} I_{M_{j}} \right)^{-1} \hat{H}_{j}^{H} P_{j} \]

Regularized Zero-Forcing (RZF):

\[V_{j}^{\text{RZF}} = \left(\hat{H}_{j}^{H} P_{j} (\hat{H}_{j}^{H})^{H} + \sigma_{UL}^{2} I_{M_{j}} \right)^{-1} \hat{H}_{j}^{H} P_{j} = \hat{H}_{j}^{H} \left((\hat{H}_{j}^{H})^{H} \hat{H}_{j}^{H} + \sigma_{UL}^{2} P_{j}^{-1} \right)^{-1} \]

Zero-Forcing (ZF):

\[V_{j}^{\text{ZF}} = \hat{H}_{j}^{H} \left((\hat{H}_{j}^{H})^{H} \hat{H}_{j}^{H} \right)^{-1} \]

Maximum Ratio (MR):

\[V_{j}^{\text{MR}} = \hat{H}_{j}^{H} \]
Running Example: Geometry

- **16 cells in square pattern (with wrap-around)**
- \(M \) antennas per BS, \(K \) users randomly deployed per cell
- Large-scale fading coefficient \(\beta^j_{lk} \) for UE at distance \(d^j_{lk} \) is\(^6\)

\[
\beta^j_{lk} \,[\text{dB}] = \Upsilon - 10\alpha \cdot \log_{10}\left(\frac{d^j_{lk}}{1 \text{ km}} \right) + F^j_{lk}
\]

with \(\Upsilon = -148.1 \text{ dB}, \ \alpha = 3.76, \ F^j_{lk} \sim \mathcal{N}(0, 7^2) \)

\(^6\)Remember \(\beta^j_{lk} = M_j^{-1} \text{tr}(R^j_{lk}) \). We make sure that \(\beta^j_{jk} \geq \beta^j_{lk} \) for all \(l \).
Running Example: Power and Pilot Reuse

- **Bandwidth** $B = 20$ MHz
 - UL/DL transmit power: 20 dBm per UE
 - Total noise power: -94 dBm
 - SNR: 20.5 dB (cell center), -5.8 dB (cell corner), before shadowing

- **Comparison of channel models**
 - Gaussian local scattering: ASD σ_φ
 - Uncorrelated Rayleigh fading: $R_{jk}^i = \beta_{jk}^i I_M$

- **Pilot reuse factor** $f \in \{1, 2, 4\}$
 - $\tau_p = fK$ UL pilot sequences
 - K pilot sequences per cell, reused in $1/f$ of the cells

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pilot reuse $f=1$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pilot reuse $f=2$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pilot reuse $f=4$
Uplink SE Simulations: Universal Pilot Reuse

\[K = 10 \text{ UEs per cell}, \tau_c = 200, \tau_p = K, \tau_d = 0 \text{ (UL only)} \]

Gaussian local scattering model: ASD \(\sigma_\varphi = 10^\circ \)

LTE: for a TDD system, the UL is 2.8 bit/s/Hz/cell
Uplink SE Simulations: Insights ($M = 100$, $K = 10$)

<table>
<thead>
<tr>
<th>Scheme</th>
<th>$f = 1$</th>
<th>$f = 2$</th>
<th>$f = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MMSE</td>
<td>50.32</td>
<td>55.10</td>
<td>55.41</td>
</tr>
<tr>
<td>S-MMSE</td>
<td>45.39</td>
<td>45.83</td>
<td>42.41</td>
</tr>
<tr>
<td>RZF</td>
<td>42.83</td>
<td>43.37</td>
<td>39.99</td>
</tr>
<tr>
<td>ZF</td>
<td>42.80</td>
<td>43.34</td>
<td>39.97</td>
</tr>
<tr>
<td>MR</td>
<td>25.25</td>
<td>24.41</td>
<td>21.95</td>
</tr>
</tbody>
</table>

Average sum SE for different receive combining and pilot reuse factors

- Three schemes useful in practice:
 - M-MMSE: Highest SE, highest complexity
 - MR: Lowest SE, lowest complexity
 - RZF: Good balance between SE and complexity

- M-MMSE benefits most from $f > 1$
 (since improved channel estimation outweighs pre-log loss)
- MR does not gain from $f > 1$
The UL channel capacity of UE \(k \) in cell \(j \) is lower bounded by
\[
\text{SE}_{jk}^{\text{UL}} = \frac{\tau_u}{\tau_c} \log_2 \left(1 + \text{SINR}_{jk}^{\text{UL}} \right) \text{[bit/s/Hz]} \text{ with effective SINR}
\]
\[
\text{SINR}_{jk}^{\text{UL}} = \frac{p_{jk} |\mathbb{E}\{v_{jk}^H h_{jk}^j\}|^2}{\sum_{l=1}^{L} \sum_{i=1}^{K_l} p_{li} |\mathbb{E}\{v_{jk}^H h_{li}^j\}|^2 - p_{jk} |\mathbb{E}\{v_{jk}^H h_{jk}^j\}|^2 + \sigma_{\text{UL}}^2 |\mathbb{E}\{|v_{jk}|^2\}|}
\]
where the expectations are with respect to the channel realizations.

- Less tight than previous bound
- Valid for any estimation and receive combining scheme\(^7\)
- Each expectation can be computed separately
- Can allow for closed-form expressions

\(^7\)It is also valid for any channel distribution!
Lemma (UatF Bound for MR Combining)

If MR combining with \(\mathbf{v}_{jk} = \hat{\mathbf{h}}_{jk}^j \) is used, then (nice exercise)

\[
\mathbb{E}\{\mathbf{v}_{jk}^H \mathbf{h}_{jk}^j\} = \mathbb{E}\{\|\mathbf{v}_{jk}\|^2\} = p_{jk} \tau_p \text{tr} \left(\mathbf{R}_{jk}^j \mathbf{\Psi}_{jk}^j \mathbf{R}_{jk}^j \right)
\]

\[
\mathbb{E}\{|\mathbf{v}_{jk}^H \mathbf{h}_{li}^l|^2\} = p_{jk} \tau_p \text{tr} \left(\mathbf{R}_{li}^l \mathbf{R}_{jk}^j \mathbf{\Psi}_{jk}^j \mathbf{R}_{jk}^j \right)
\]

\[
+ \begin{cases}
 p_{li} p_{jk} (\tau_p)^2 \left| \text{tr} \left(\mathbf{R}_{li}^l \mathbf{\Psi}_{jk}^j \mathbf{R}_{jk}^j \right) \right|^2 & (l, i) \in \mathcal{P}_{jk} \\
 0 & (l, i) \notin \mathcal{P}_{jk}
\end{cases}
\]

The SE expression becomes \(\text{SE}_{jk}^{UL} = \frac{\tau_u}{\tau_c} \log_2(1 + \text{SINR}_{jk}^{UL}) \) with

\[
\text{SINR}_{jk}^{UL} = \frac{p_{jk}^2 \tau_p \text{tr} \left(\mathbf{R}_{jk}^j \mathbf{\Psi}_{jk}^j \mathbf{R}_{jk}^j \right)}{\sum_{l=1}^{L} \sum_{i=1}^{K_l} p_{li} \frac{\text{tr} \left(\mathbf{R}_{li}^l \mathbf{R}_{jk}^j \mathbf{\Psi}_{jk}^j \mathbf{R}_{jk}^j \right)}{\text{tr} \left(\mathbf{R}_{jk}^j \mathbf{\Psi}_{jk}^j \mathbf{R}_{jk}^j \right)}} + \sum_{(l,i)\in \mathcal{P}_{jk}\setminus(j,k)} \frac{p_{li}^2 \tau_p \left| \text{tr} \left(\mathbf{R}_{li}^l \mathbf{\Psi}_{jk}^j \mathbf{R}_{jk}^j \right) \right|^2}{\text{tr} \left(\mathbf{R}_{jk}^j \mathbf{\Psi}_{jk}^j \mathbf{R}_{jk}^j \right)} + \sigma_{UL}^2
\]
Insights from the UatF Bound with MR Combining

\[
\begin{align*}
&\sum_{l=1}^{L} \sum_{i=1}^{K_l} p_{li} \left(\frac{\text{tr} \left(\mathbf{R}_{li}^{j} \mathbf{R}_{jk}^{j} \mathbf{\Psi}_{jk}^{j} \mathbf{R}_{jk}^{j} \right)}{\text{tr} \left(\mathbf{R}_{jk}^{j} \mathbf{\Psi}_{jk}^{j} \mathbf{R}_{jk}^{j} \right)} \right) \quad \text{Non-coherent interference} \\
&\sum_{(l,i) \in \mathcal{P}_{jk} \setminus (j,k)} p_{li}^{2} \tau_{p} \left| \text{tr} \left(\mathbf{R}_{li}^{j} \mathbf{\Psi}_{jk}^{j} \mathbf{R}_{jk}^{j} \right) \right|^{2} \quad \text{Coherent interference} \\
&\sigma_{UL}^{2} \quad \text{Noise}
\end{align*}
\]

- Signal \(\sim M_{j} \) (trace of channel estimate’s correlation matrix)
- Non-coherent interference + noise do not increase with \(M_{j} \)
- Coherent interference \(\sim M_{j} \) (due to pilot contamination)

The relations between the correlation matrices \(\mathbf{R}_{li}^{j} \) and \(\mathbf{R}_{jk}^{j} \) determine the strength of the interference terms.
Pilot Contamination: Coherent Interference

- Two UEs using the same pilot sequence
 - Desired UE has nominal angle of 30°
 - Nominal angle of undesired UE varies from −180° to 180°
 - Local scattering channel model with Gaussian angular distribution
 - 10 dB SNR to desired UE, 0 dB to interfering UE
Spatial channel correlation increases the sum SE since it reduces interference. For very small ASDs, the scenario is almost LoS.

\[^8\]Dotted lines represent results for uncorrelated Rayleigh fading.
Uplink Spectral Efficiency: Key Points

- **Lower bound on UL capacity** based on MMSE channel estimation
 - An achievable SE, maximized by M-MMSE combining
- **Combining schemes**: M-MMSE, S-MMSE, RZF, ZF, MR
- **Factors that affect SE**
 - Transmit powers
 - Pilot reuse factor
 - Spatial channel correlation
 - Pilot contamination
- **Insights from SE analysis** and running example
 - Received signal power and coherent interference linear in M
 - Non-coherent interference and noise independent of M
 - Coherent interference negligible for large pilot reuse factors
- **UatF bound** based on “average” channel:
 - Gives closed-form SE expressions with MR
 - Only tight with significant channel hardening
Downlink Spectral Efficiency
Received DL signal $y_{jk} \in \mathbb{C}$ at UE k in cell j:

$$y_{jk} = (h_{jk}^j)^H w_{jk} \varsigma_{jk} + \sum_{i=1}^{K_j} (h_{jk}^j)^H w_{ji} \varsigma_{ji} + \sum_{l=1}^{L} \sum_{i=1}^{K_l} (h_{jk}^l)^H w_{li} \varsigma_{li} + n_{jk}$$

- Desired signal
- Intra-cell interference
- Inter-cell interference
- Noise

- BS l transmits the signal $x_l = \sum_{i=1}^{K_l} w_{li} \varsigma_{li}$
- Precoding vectors: $w_{lk} \in \mathbb{C}^{M_l}$ with $\mathbb{E}\{\|w_{lk}\|^2\} = 1$
- Data signals: $\varsigma_{lk} \sim \mathcal{N}(0, \rho_{lk})$
- Receiver noise: $n_{jk} \sim \mathcal{N}(0, \sigma_{DL}^2)$
The UE k in cell j decodes its signal ς_{jk} based on:

$$y_{jk} = (h_{jk}^j)^H w_{jk} \varsigma_{jk} + \sum_{l=1}^{L} \sum_{i=1}^{K_l (l,i) \neq (j,k)} (h_{jk}^l)^H w_{li} \varsigma_{li} + n_{jk}$$

- **Efficient decoding requires:**
 - Realization of precoded channel $(h_{jk}^j)^H w_{jk}$
 - Interference plus noise power $\sum_{(l,i) \neq (j,k)} |(h_{jk}^l)^H w_{li}|^2 \rho_{li} + \sigma^2_{DL}$

- **How to acquire this information?**
 - Estimate current realizations from received DL signals
 - Exploit channel hardening

$$\begin{align*}
(h_{jk}^j)^H w_{jk} & \approx \mathbb{E}\{(h_{jk}^j)^H w_{jk}\} \\
\sum_{(l,i) \neq (j,k)} |(h_{jk}^l)^H w_{li}|^2 \rho_{li} & \approx \sum_{(l,i) \neq (j,k)} \mathbb{E}\{|(h_{jk}^l)^H w_{li}|^2\} \rho_{li}
\end{align*}$$
A Downlink Spectral Efficiency (Hardening Bound)

Theorem

The DL channel capacity of UE k in cell j is lower bounded by

$$\text{SE}^\text{DL}_{jk} = \frac{\tau_d}{\tau_c} \log_2(1 + \text{SINR}^\text{DL}_{jk}) \text{ [bit/s/Hz]}$$

with effective SINR

$$\text{SINR}^\text{DL}_{jk} = \frac{\rho_{jk} |E\{w^H_{jk} h^j_{jk}\}|^2}{\sum_{l=1}^{L} \sum_{i=1}^{K_l} \rho_{li} E\{|w^H_{li} h^l_{jk}|^2\} - \rho_{jk} |E\{w^H_{jk} h^j_{jk}\}|^2 + \sigma^2_{DL}}$$

where the expectations are with respect to the channel realizations.

- The prelog factor $\frac{\tau_d}{\tau_c}$ is fraction of all samples used for DL data
- The result holds for any set of transmit precoding vectors $\{w_{li}\}$
- Valid for any channel distribution and any estimation scheme
- Derived similarly to the UatF bound in UL

SE^DL_{jk} depends on all precoding vectors in entire network.

Not obvious how to design the precoding.
Insights from the SE Bound with MR

\[\rho_{jk} p_{jk} \tau_p \text{tr} \left(R_{jk}^j \Psi_{jk}^j R_{jk}^j \right) \]
\[\sum_{l=1}^{L} \sum_{i=1}^{K_l} \frac{\rho_{li}}{\text{tr} \left(R_{li}^l \Psi_{li}^l R_{li}^l \right)} \text{tr} \left(R_{jk}^j \Psi_{jk}^j R_{jk}^j \right) \] + \[\sum_{(l,i) \in P_{jk} \setminus (j,k)} \rho_{li} \frac{p_{jk} \tau_p \left| \text{tr} \left(R_{jk}^j \Psi_{li}^l R_{li}^l \right) \right|^2}{\text{tr} \left(R_{li}^l \Psi_{li}^l R_{li}^l \right)} \] + \sigma_{DL}^2

Non-coherent interference

Coherent interference

Noise

Similar interpretation as in uplink:

- Signal \(\sim M_j \) (trace of channel estimate’s correlation matrix)
- Non-coherent interference + noise do not increase with \(M_j \)
- Coherent interference \(\sim M_l \) from BS \(l \) (due to pilot contamination)

The relations between the correlation matrices \(R_{li}^l \) and \(R_{jk}^j \) determine the strength of the interference terms
Different Correlation Matrices Affect DL and UL

UE i in cell l interferes differently with UE k in cell j in the UL and DL

- **Uplink:** Interference comes directly from UE i in cell l
- **Downlink:** Interference comes from the BS in cell l

Different sets of correlation matrices affect UL and DL interference.

In the example, the UEs are well separated in angle in DL, but not in UL.
Pilot Contamination with MR Precoding

Two UEs transmit the same UL pilot sequence, causing the channel estimates at the respective BSs to be correlated.

When a BS attempts to direct a signal towards its own UE using MR precoding, it will partially direct it towards the pilot-interfering UE in the other cell.
Comparing Downlink and Uplink Expressions

\[\text{SINR}_{jk}^{DL} = \frac{\rho_{jk} |E\{w_{jk}^H h_{jk}^j\}|^2}{\sum_{l=1}^{L} \sum_{i=1}^{K_l} \rho_{li} E\{|w_{li}^H h_{jk}^l|^2\} - \rho_{jk} |E\{w_{jk}^H h_{jk}^j\}|^2 + \sigma_{DL}^2} \]

\[\text{SINR}_{jk}^{UL} = \frac{p_{jk} |E\{v_{jk}^H h_{jk}^j\}|^2}{\sum_{l=1}^{L} \sum_{i=1}^{K_l} p_{li} E\{|v_{jk}^H h_{jk}^j|^2\} - p_{jk} |E\{v_{jk}^H h_{jk}^j\}|^2 + \sigma_{UL}^2} \]

Similar structure if \(w_{jk} = v_{jk} / \sqrt{E\{|v_{jk}|^2\}} \):

<table>
<thead>
<tr>
<th></th>
<th>Downlink</th>
<th>Uplink</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit power</td>
<td>(\rho_{li})</td>
<td>(p_{li})</td>
</tr>
<tr>
<td>Channel gain</td>
<td>(</td>
<td>E{w_{jk}^H h_{jk}^j}</td>
</tr>
<tr>
<td>Interference gain</td>
<td>(E{</td>
<td>w_{li}^H h_{jk}^l</td>
</tr>
<tr>
<td>from UE (i), cell (l)</td>
<td>((j \leftrightarrow l), (k \leftrightarrow i))</td>
<td></td>
</tr>
<tr>
<td>Noise power</td>
<td>(\sigma_{DL}^2)</td>
<td>(\sigma_{UL}^2)</td>
</tr>
</tbody>
</table>
Theorem

Consider a given set of receive combining vectors \(\{v_{li}\} \) and UL powers \(\{p_{li}\} \), which achieves SINR\(_{jk}^{UL}\) for all \(j \) and \(k \).

If the precoding vectors are selected as \(w_{jk} = v_{jk} / \sqrt{E\{\|v_{jk}\|^2\}} \), then there exist DL powers \(\{\rho_{li}\} \) such that

\[
\text{SINR}_{jk}^{DL} = \text{SINR}_{jk}^{UL} \quad j = 1, \ldots, L, \quad k = 1, \ldots, K_j.
\]

The sum transmit power in the DL and UL is related as

\[
\frac{1}{\sigma^2_{DL}} \sum_{j=1}^{L} \sum_{k=1}^{K_j} \rho_{jk} = \frac{1}{\sigma^2_{UL}} \sum_{j=1}^{L} \sum_{k=1}^{K_j} p_{jk}.
\]

- Main insight: Use receive combining vectors for transmit precoding!
- Less important: DL powers can be computed in closed-form
Transmit Precoding Schemes

Implication from the uplink-downlink duality:

- Select precoding vectors based on receive combining vectors as

 $$w_{jk} = \frac{v_{jk}}{\|v_{jk}\|}$$

 where

 $$[v_{j1} \cdots v_{jK_j}] = \begin{cases}
 V_{j}^{M-MMSE} & \text{with M-MMSE precoding} \\
 V_{j}^{S-MMSE} & \text{with S-MMSE precoding} \\
 V_{j}^{RZF} & \text{with RZF precoding} \\
 V_{j}^{ZF} & \text{with ZF precoding} \\
 V_{j}^{MR} & \text{with MR precoding}
 \end{cases}$$

- Note: These are all heuristic schemes

Normalize by $\|v_{jk}\|$ instead of $\sqrt{\mathbb{E}\{|v_{jk}|^2\}}$ to reduce variations in precoded channel $(h_{jk}^j)^H w_{jk}$.
• UE uses the τ_d received signal to estimate the DL channels [Cai17]

Theorem

The DL channel capacity of UE k in cell j is lower bounded by $\text{SE}_{jk}^{\text{DL}}$ [bit/s/Hz] given by

$$
\frac{\tau_d}{\tau_c} \mathbb{E} \left\{ \log_2 \left(1 + \text{SINR}_{jk}^{\text{DL}} \right) \right\} - \sum_{i=1}^{K_j} \frac{1}{\tau_c} \log_2 \left(1 + \frac{\rho_{ji} \tau_d \mathbb{V} \{ w_{ji}^H h_{jk}^j \} }{\sigma_{\text{DL}}^2} \right)
$$

where the expectation/variance are computed with respect to all channels to this BS and

$$
\text{SINR}_{jk}^{\text{DL}} = \frac{\rho_{jk} |w_{jk}^H h_{jk}^j|^2}{\sum_{i=1}^{K_j} \rho_{ji} |w_{ji}^H h_{jk}^j|^2 + \sum_{l=1}^{K_i} \sum_{l \neq j}^{K_j} \rho_{li} \mathbb{E} \left\{ |w_{li}^H h_{jk}^l|^2 \right\} + \sigma_{\text{DL}}^2}
$$

where the expectations are with respect to channels to other BSs.
$K = 10$ UEs per cell, $\tau_c = 200$, $\tau_p = K$, $\tau_u = 0$ (DL data only)

Running example, Gaussian local scattering model: ASD $\sigma_\varphi = 10^\circ$
Downlink Spectral Efficiency: Key Points

- **Two bounds on DL capacity**
 - Estimation bound: Preferable when $τ_d$ is large
 - Hardening bound: Preferable when $τ_d$ is small

- **Uplink-downlink duality**
 - Use same vectors for combining and precoding
 - Similar SE in both directions, depending on transmit powers
 - Transmit precoding vectors: M-MMSE, S-MMSE, RZF, ZF, MR

- **Factors that affect SE**
 - Transmit powers
 - Pilot reuse factor
 - Spatial channel correlation
 - Pilot contamination

- **Differences from uplink**
 - Interference comes from BSs
 - Other set of correlation matrices determine interference
 - Both signal and interference power depends on the UE’s position
Asymptotic Analysis
What is the Purpose of Asymptotic Analysis?

Since its inception, Massive MIMO has been strongly connected with asymptotic analysis: $M_j \to \infty$

- It is not physically possible to approach the limits in practice
- Channel models break down (more received power than transmitted)
- The technology will not be cost efficient

What is the purpose then?

- Determine what is the asymptotically optimal scheme
- Determine how far from the asymptotic performance a practical system is
- Determine if we can deliver any given user rates as $M_j \to \infty$ or if the system is fundamentally limited
- Utilize asymptotic expressions for simplified resource allocation
What is it Known as $M_j \rightarrow \infty$?

- Finite upper limit — uncorrelated Rayleigh fading [Mar10]
- No upper limit
 - Pilot contamination precoding, all base stations serve all users
 - Channels in different eigenspaces
 - Using semi-blind estimation and $\tau_c \rightarrow \infty$

We will prove there is no upper limit under general, practical conditions
Definition (Linearly independent correlation matrices)

Consider the correlation matrix $R \in \mathbb{C}^{M \times M}$. This matrix is linearly independent of the correlation matrices $R_1, \ldots, R_N \in \mathbb{C}^{M \times M}$ if

$$\left\| R - \sum_{i=1}^{N} c_i R_i \right\|_F^2 > 0$$

for all scalars $c_1, \ldots, c_N \in \mathbb{R}$.

We say that R is asymptotically linearly independent of R_1, \ldots, R_N if

$$\liminf_{M \to \infty} \frac{1}{M} \left\| R - \sum_{i=1}^{N} c_i R_i \right\|_F^2 > 0$$

for all scalars $c_1, \ldots, c_N \in \mathbb{R}$.
Consider the two matrices
\[R = \begin{bmatrix} \epsilon_1 & 0 & \ldots \\ 0 & \ddots & 0 \\ \ldots & 0 & \epsilon_M \end{bmatrix} \quad \text{and} \quad R_1 = I_M \]
where \(\epsilon_1, \ldots, \epsilon_M \) are i.i.d. positive random variables.

- From the law of large numbers:
 \[
 \frac{1}{M} \| R - c_1 R_1 \|_F^2 = \frac{1}{M} \sum_{m=1}^{M} (\epsilon_m - c_1)^2 \geq \frac{1}{M} \sum_{m=1}^{M} \left(\epsilon_m - \frac{1}{M} \sum_{n=1}^{M} \epsilon_n \right)^2
 \]
 \[
 \rightarrow \mathbb{E}\{(\epsilon_m - \mathbb{E}\{\epsilon_m\})^2\} = \text{Variance} > 0
 \]

Take any linearly dependent matrices (e.g., uncorrelated Rayleigh fading). Add perturbations: they become asymptotically linearly independent.

- Nature will only create linearly independent correlation matrices
Asymptotic Behavior of MR

Theorem (MR combining)

Under Assumption 1, if MR combining with $v_{jk} = \hat{h}_{jk}^j$ is used, it follows that

$$\text{SINR}_{jk}^{UL} = \frac{p_{jk}^2 \text{tr}\left(R_{jk}^j \Psi_{jk}^j R_{jk}^j \right)}{\sum_{(l,i) \in P_{jk} \setminus (j,k)} p_{li}^2 \left| \frac{\text{tr}(R_{li}^j \Psi_{jk}^j R_{jk}^j)}{\text{tr}(R_{jk}^j \Psi_{jk}^j R_{jk}^j)} \right|^2} \to 0$$

as $M_j \to \infty$.\(^9\)

- Impact of noise and non-coherent interference vanishes
- Coherent signal and interference terms remain
 - There is a finite upper SE limit
- Similar result can be proved for the downlink

\(^9\)Except in special cases when $\text{tr}(R_{jk}^j R_{li}^j)/M_j \to 0$ for all $(l, i) \in P_{jk} \setminus (j, k)$
Asymptotic Behavior of M-MMSE

Theorem (M-MMSE combining)

If BS j uses M-MMSE combining with MMSE channel estimation, then the uplink SE of UE k in cell j grows without bound as $M_j \to \infty$, if

- Assumption 1 holds
- The correlation matrix R_{jk} is asymptotically linearly independent of the set of correlation matrices R_{li} with $(l, i) \in \mathcal{P}_{jk} \setminus (j, k)$.

- Impact of noise, coherent, and non-coherent interference vanishes
- Asymptotic linear independence is key
 - Does not hold under uncorrelated Rayleigh fading
 - Practical correlation matrices satisfy this condition
- Channel estimates are linearly independent since

$$\hat{h}_{jk} - c\hat{h}_{li} = \left(\sqrt{p_{jk}}R_{jk}^j - c\sqrt{p_{li}}R_{li}^j\right)\Psi_{jk}^j y_{jjk}^p$$
UEs that share a pilot have linearly independent channel estimates.

The indicated v_{jk} rejects the coherent interference: $v_{jk}^H \hat{h}_j = 0$

The desired signal remains: $v_{jk}^H \hat{h}_{jk} \neq 0$
Uplink scenario with very strong coherent interference:

- $L = 2$ cells
- $K = 2$ UEs per cell, $\tau_p = 2$.
- SNR -2 dB from serving BS, -2.3 dB from interfering BS
- Gaussian local scattering model with 10° ASD

- Channels modeled as in running example (but no shadow fading)
Asymptotic SE Behavior

Sum SE as a function of the number of BS antennas (logarithmic scale).

SE grows unboundedly as $\log_2(M)$ with M-MMSE combining
Convergence to finite limits with other combining schemes
No! Unlimited capacity is achieved using the following ingredients

- Spatial correlated channels – only a minor amount is needed
- MMSE channel estimation – not least-square
- Optimal linear combining – not MR, ZF, or S-MMSE
Key Points

- Asymptotic behavior
 - Impact of noise and non-coherent interference always vanish
 - Coherent interference caused by pilot contamination is a challenge
 - Impact of coherent interference vanish with M-MMSE
 - SE grows as $\log_2(M)$ when using M-MMSE

- Spatial channel correlation is important in asymptotic analysis
 - Enables unbounded SE when using M-MMSE
 - Determines the upper limit when using S-MMSE, RZF, ZF, MR

- Knowing the channel correlation matrices is key
 - Only diagonals are needed if element-wise MMSE estimation is used (details found in [BHS18])
 - Correlation matrices can be estimated from pilots
Power Allocation
Utility Function

How to measure network performance?

- There are $\sum_{l=1}^{L} K_l$ UEs, each with UL SE and DL SE
- Combining/precoding and transmit power allocation affect SE
- For given precoding, the DL SEs have a common structure:

$$SE_{DL}^{jk} = \frac{\tau_d}{\tau_c} \log_2 \left(1 + \frac{\rho_{jk} a_{jk}}{\sum_{l=1}^{L} \sum_{i=1}^{K_l} \rho_{li} b_{lijk} + \sigma_{DL}^2} \right)$$

for UE k in cell j

$$a_{jk} = |\mathbb{E}\{w_{jk}^H h_{jk}^j\}|^2 \quad b_{lijk} = \begin{cases} \mathbb{E}\{|w_{li}^H h_{jk}^l|^2\} & (l, i) \neq (j, k) \\ \mathbb{E}\{|w_{jk}^H h_{jk}^l|^2\} - |\mathbb{E}\{w_{jk}^H h_{jk}^j\}|^2 & (l, i) = (j, k) \end{cases}$$

Utility function: Maps all SEs into a single performance metric

$$U(SE_{11}, \ldots, SE_{LK_L}) = \begin{cases} \sum_{j=1}^{L} \sum_{k=1}^{K_j} SE_{jk} & \text{Max sum SE} \\ \min_j \sum_k SE_{jk} & \text{Max-min fairness} \\ \prod_{j=1}^{L} \prod_{k=1}^{K_j} \text{SINR}_{jk} & \text{Max product SINR} \end{cases}$$
Example: SE Region and Operating Points

SE region with all \((SE_{11}^{DL}, SE_{12}^{DL})\) achieved by different power allocations.

Pareto boundary contains all resource-efficient operating points.

The operating points maximizing the three utility functions are indicated.
Basic Optimization Theory

Optimization problem on standard form:

\[
\begin{align*}
\text{maximize} & \quad f_0(x) \\
\text{subject to} & \quad f_n(x) \leq 0 \quad n = 1, \ldots, N
\end{align*}
\]

- Optimization variable \(x = [x_1 \ x_2 \ \ldots \ x_V]^T \in \mathbb{R}^V \)
- Utility function \(f_0 : \mathbb{R}^V \to \mathbb{R} \)
- Constraint functions \(f_n : \mathbb{R}^V \to \mathbb{R}, \ n = 1, \ldots, N \)

Solvable to global optimality with standard techniques (CVX, Yalmip) if

- **Linear program**: \(f_0 \) and \(f_1, \ldots, f_N \) are linear or affine functions
- **Geometric program**: \(-f_0 \) and \(f_1 - 1, \ldots, f_N - 1 \) are posynomials\(^{10}\)
- **Convex program**: \(-f_0 \) and \(f_1, \ldots, f_N \) are convex functions

\(^{10}\) \(f_n \) is posynomial if \(f_n(x) = \sum_{b=1}^{B} c_b x_1^{e_{1,b}} x_2^{e_{2,b}} \cdots x_V^{e_{V,b}} \) for some positive integer \(B \), constants \(c_b > 0 \), and exponents \(e_{1,b}, \ldots, e_{V,b} \in \mathbb{R} \) for \(b = 1, \ldots, B \)
Power optimization problem:

\[
\begin{align*}
\text{maximize} & \quad U(\mathbf{SE}_{11}^{DL}, \ldots, \mathbf{SE}_{LK_L}^{DL}) \\
\text{subject to} & \quad \sum_{k=1}^{K_j} \rho_{jk} \leq P_{\text{DL max}}^{DL}, \quad j = 1, \ldots, L
\end{align*}
\]

- Maximum total transmit power \(P_{\text{DL max}}^{DL} \geq 0 \) per BS
- Fixed precoding and UL transmit powers

Similar to classic single-antenna power allocation problems [CHLT08, WCLa+12, BJ13]

- Max sum SE: Non-convex program, hard to solve
- Max-min fairness: Quasi-linear program, easy to solve
- Max product SINR: Geometric program, easy to solve
CDF of DL SE per UE for the running example with $M = 100$, $K = 10$, $f = 2$, and Gaussian local scattering model with ASD $\sigma_\varphi = 10^\circ$.

Max product SINR provides high rates and fairness
Uplink transmit power optimization is complicated since it affects

- Quality of channel estimates
- Combining vectors
- Power of data symbols

Heuristic power control

- Each UE has a maximum transmit power $P_{UL}^{max} > 0$
- Near-far effect: Reduce received power differences between UEs
- Maximum received power ratio $\Delta \geq 0$ dB

$$p_{jk} = \begin{cases} P_{UL}^{max} & \Delta > \frac{\beta_{jk}^j}{\beta_{j,\min}^j} \\ P_{UL}^{max} \Delta \frac{\beta_{j,\min}^i}{\beta_{jk}^j} & \Delta \leq \frac{\beta_{jk}^j}{\beta_{j,\min}^j} \end{cases}$$

with $\beta_{j,\min}^j = \min_{i=1,...,K_j} \beta_{ji}^j$
Running Example: Uplink with Power Control

CDF of UL SE per UE
\(M = 100, K = 10 \)

Gaussian local scattering model with \(\sigma_\varphi = 10^\circ \).

Small \(\Delta \) improves SE of weakest UEs

Largest effect on MR

MR combining

M-MMSE combining
Power Allocation: Key Points

- **Power optimization** determines UE performance
 - How sum SE is divided between UEs
 - Downlink power allocation
 - Uplink power control

- **Downlink**: Maximize product SINR
 - Give good SEs for all UEs
 - Provide reasonable fairness

- **Uplink**: Heuristic power control
 - Important to avoid near-far effects
 - Largely affect MR performance
 - Smaller affect on M-MMSE
Channel Modeling & Polarization
Taxonomy of Wireless Channel Models

Deterministic

- LoS
- Ray tracing
- Recorded channel measurements

Stochastic

- Correlation-based
- Parametric
- Geometry-based

Deterministic models
- Very accurate performance predictions for a specific scenario
- Do not allow for far-reaching conclusions

Stochastic models
- Not dependent on a specific scenario
- Spatial consistency between UEs and during mobility not guaranteed
The 3GPP 3D MIMO model [3GP15] is stochastic and geometry-based

- C scattering clusters with random angles, 20 multipath components
- Each cluster has a time delay τ_l and a power p_l, for $l = 1, \ldots, C$
- Distributions of angles, delays, and powers depend on the scenario
Observations from Channel Measurements

- Favorable propagation \([\text{GERT11, HHWtB12}]\)
 - Measured by average UE correlation \(\mathbb{E}\left\{ \frac{|h_1^H h_2|^2}{\|h_1\|^2 \|h_2\|^2} \right\}\) of two UEs
 - Similar convergence as i.i.d. fading for small \(M\)
 - Slower convergence for large \(M\)

- Comparison: Measurements and 3GPP 3D MIMO model \([\text{GHH}^+15]\)
 - Horizontal arrays give better decorrelation than vertical/planar

![Graph showing average UE correlation versus number of antennas (M)]
Definition (Radiating element, antenna, antenna array)

An antenna consists of one or more radiating elements (e.g., dipoles) which are fed by the same RF signal. An antenna array is composed of multiple antennas with individual RF chains.
• **Polarization ellipse**: Movement of the tip of the electric field vector over time at a fixed position
• Either linear, circular or elliptical
• Tilt angle defines the *polarization direction* of a linearly polarized EM wave (e.g., 90° (vertical), 0° (horizontal), $\pm45^\circ$ (slant))
• Any linear polarization can be obtained from a superposition of two orthogonal polarizations
• **Uni-polarized** antennas respond to a unique polarization direction
• **Dual-polarized** antennas respond to two orthogonal field components
• UEs generally uni-polarized, BSs dual-polarized (Why?)
• Effective polarization direction depends on antenna orientation

Dual-polarized antenna arrays

A dual-polarized antenna array with M antennas is composed of $M/2$ uni-polarized antennas for each polarization direction.

For space reasons, the antennas for both polarization directions are generally co-located (half the antenna array size in each dimension).
Case Study
Case Study: Scenario

Analyze practical baseline performance with

- 3GPP 3D UMi NLoS channel model\(^\text{11}\)
- Optimized power allocation
- Least-square channel estimation (without channel statistics)
- MR or RZF processing

\(^{11}\text{Using QuaDRiGa implementation by Fraunhofer Heinrich Hertz Institute}\)
Maximum transmit power

- Uplink: 20 dBm per UE
- Downlink: 30 dBm per BS

Cylindrical array configurations ("horizontal × vertical × polarization"):

1. $10 \times 5 \times 2 \ (M = 100)$
2. $20 \times 5 \times 1 \ (M = 100)$
3. $20 \times 5 \times 2 \ (M = 200)$

BS height 25 m, UE height 1.5 m

1) and 2) have same number of RF chains
2) and 3) have same physical size
Network Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>UE dropping</td>
<td>$K = 10$ UEs in $250 \text{ m} \times 250 \text{ m}$ area around each BS, with 35 m minimum distance</td>
</tr>
<tr>
<td>Carrier frequency</td>
<td>2 GHz</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>$B = 20$ MHz</td>
</tr>
<tr>
<td>Receiver noise power</td>
<td>-94 dBm</td>
</tr>
<tr>
<td>Number of subcarriers</td>
<td>2000</td>
</tr>
<tr>
<td>Subcarrier bandwidth</td>
<td>10 kHz</td>
</tr>
<tr>
<td>Cyclic prefix overhead</td>
<td>5%</td>
</tr>
<tr>
<td>Frame dimensions</td>
<td>$B_c = 50$ kHz, $T_c = 4$ ms</td>
</tr>
<tr>
<td>Subcarriers per frame</td>
<td>5</td>
</tr>
<tr>
<td>Useful samples per frame</td>
<td>$\tau_c = B_c T_c / 1.05 \approx 190$</td>
</tr>
<tr>
<td>Pilot reuse factor</td>
<td>$f = 2$</td>
</tr>
<tr>
<td>Number of UL pilot sequences</td>
<td>$\tau_p = 30$</td>
</tr>
</tbody>
</table>
CDF of downlink throughput per UE in the case study

Fixed physical size: Use dual-polarization to double number of antennas
Fixed number of RF chains: Use larger uni-polarized array
Downlink: Max-min Fairness Power Allocation

![Graph showing CDF of DL throughput per UE [Mbit/s] for different schemes and M values.]

<table>
<thead>
<tr>
<th>Scheme</th>
<th>95% likely</th>
<th>Median</th>
<th>5% likely</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max product SINR (MR)</td>
<td>5.3 Mbit/s</td>
<td>21.8 Mbit/s</td>
<td>46.7 Mbit/s</td>
</tr>
<tr>
<td>Max product SINR (RZF)</td>
<td>6.7 Mbit/s</td>
<td>36.2 Mbit/s</td>
<td>67.6 Mbit/s</td>
</tr>
<tr>
<td>Max-min fairness (MR)</td>
<td>9.1 Mbit/s</td>
<td>11.7 Mbit/s</td>
<td>14.3 Mbit/s</td>
</tr>
<tr>
<td>Max-min fairness (RZF)</td>
<td>11.3 Mbit/s</td>
<td>17.5 Mbit/s</td>
<td>21.7 Mbit/s</td>
</tr>
</tbody>
</table>
Uplink: Heuristic power control \(\Delta = 20 \text{ dB} \)

CDF of uplink throughput per UE in the case study

Similar observations as in downlink
Uplink: Heuristic power control $\Delta = 0$ dB

<table>
<thead>
<tr>
<th>Scheme</th>
<th>95% likely</th>
<th>Median</th>
<th>5% likely</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta = 20$ dB (MR)</td>
<td>1.1 Mbit/s</td>
<td>9.7 Mbit/s</td>
<td>33.0 Mbit/s</td>
</tr>
<tr>
<td>$\Delta = 20$ dB (RZF)</td>
<td>3.1 Mbit/s</td>
<td>20.9 Mbit/s</td>
<td>47.3 Mbit/s</td>
</tr>
<tr>
<td>$\Delta = 0$ dB (MR)</td>
<td>2.8 Mbit/s</td>
<td>9.8 Mbit/s</td>
<td>23.9 Mbit/s</td>
</tr>
<tr>
<td>$\Delta = 0$ dB (RZF)</td>
<td>3.5 Mbit/s</td>
<td>14.5 Mbit/s</td>
<td>33.6 Mbit/s</td>
</tr>
</tbody>
</table>
Case Study: Key Points

Average sum throughput over 20 MHz channel

- Downlink: 358 Mbit/s (area throughput: 5.7 Gbit/s/km2)
- Uplink: 209 Mbit/s (area throughput: 3.3 Gbit/s/km2)
- Difference due to twice as many downlink data samples per frame
- Tradeoff between high average throughput and user fairness

LTE in similar setup:

- Downlink area throughput: 263 Mbit/s/km2
- Uplink area throughput: 115 Mbit/s/km2
- Massive MIMO setup delivers 20–30 times higher throughput
- Gain from multiplexing and coherent precoding/combining
Open Problems
Some Important Open Problems

Channel measurements, channel modeling, data traffic modeling

- Required for system simulations
- Validate many assumptions (pilot contamination, channel hardening, properties of covariance matrices)

What will be the successor of Massive MIMO?

- Can we increase spectral efficiency with $10 \times$ over Massive MIMO?

Massive MIMO is a mature research field, no low-hanging fruits!
Machine Learning (ML) and Massive MIMO?

ML could provide new ideas and benefits for long-standing problems:

- Channel estimation [NWU18]
- Symbol detection [JHL16, SDW17, TXB†18]
- User localization [VLS†17]
- Deal with hardware impairments
- Scheduling
- ...

Do we really need ML here? Are their tangible gains?
Questions?

