Hide menu

TSKS15 Detection and Estimation of Signals

Erik G. Larsson
Erik G. Larsson

Course Director

TSKS15 Detection and Estimation of Signals treats statistical signal processing, specifically parameter estimation and detection of signals. The purpose of the course is to provide a solid foundation in algorithms, models, methods and theory for the extraction of information from noisy signals. Applications are found within radar systems, communications systems, positioning systems and image analysis.




The course is offered next time in the first quarter of the 2018 fall semester.

Course topics:

  • Problems in radar, communications and source localization systems.
  • Classical versus Bayesian approaches.
  • Hypothesis testing. Binary and M-ary tests. Bayes cost and error probability. Neyman-Pearson theorem.
  • Classical estimation. Maximum-likelihood, Fisher information, Cramer-Rao bound.
  • Bayesian estimation theory. MMSE and LMMSE.
  • Composite hypothesis testning. GLRT. Marginalization. Model selection.
  • Linear and nonlinear models with Gaussian noise. Slepian-Bang formula. Noise whitening.
  • Detection of signals in continuous time.
  • Performance and variance analysis. Asymptotic properties of estimates.
  • Complex-valued data and noise. Circularly symmetric noise.
  • Applications: amplitude, frequency, phase, time-delay and angle estimation.

The course consists of a lecture series and two computer projects:

  1. Radar range estimation. The purpose of this project is to implement a maximum-likelihood time-of-arrival estimator, perform Monte-Carlo simulation of its performance, and compare with theoretical bounds.
  2. Music transcription. The purpose of this project is to design an algorithm for the detection of tones in music, implement this algorithm in Matlab, and evaluate its performance.

Instructors:

  • Course director and lecturer: Erik G. Larsson
  • Tutorial assistant: TBD
  • Lab assistants: TBD

Compulsory reading:

  • S. Kay, Statistical Signal Processing: Estimation Theory (Volume I) and Statistical Signal Processing: Detection Theory (Volume II), Prentice-Hall.

  • We will cover selected material from Chapters 1-4, 6-12 and 15 in Volume I, and from Chapters 1-9 in Volume II.

Documents and files:

Schedule: TBD

General information:


Page responsible: Erik G. Larsson
Last updated: 2018 01 21   09:56