LECTURE 1, Analog Filters

Introduction, Recapitulation, and Outline

Analog Signals, Systems, and Filters

Applications

Mathematical tools

LTI-systems

Differential equation, impulse and step response, convolution

Transfer function, Frequency response

Design process

Synthesis, realization, implementation

LECTURE 2, Analog Filters

Filter Synthesis

LTI Filters

Transfer function, frequency response

Magnitude response, attenuation function

Phase response, group delay, phase delay

(Impulse response, step response)

Specification - frequency selective LP filters

Magnitude response requirements

Sometimes phase response requirements - (approx.) linear phase

Standard approximations

Butterworth, Chebyshev I and II, Cauer (Elliptic)

Basic properties and comparisons

Synthesis procedure

Determine filter order and zeros & poles & gain

Normalization/denormalization (LP -> LP frequency transformation)

LECTURE 3, Analog Filters

Filter Synthesis - Lowpass

Synthesis procedure for analog LP

Determine filter order and zeros & poles & gain

Normalization/denormalization (LP -> LP frequency transformation)

Characteristic function

Used when solving the approximation problems

LECTURE 4, Analog Filters

Filter Synthesis - Highpass, Bandpass, Bandstop

Synthesis procedure for analog HP, BP, and BS filters

Specification mapping, synthesis of LP filter, pole-zero mapping

Frequency transformations

Pole-zero mappings

Frequency and specification mappings

LECTURE 5, Analog Filters

Passive Filter Structures with Discrete Elements

Resistor, inductor, capacitor

Doubly resistively terminated LC-filters

Maximum power transfer principle

Low sensitivity

Ladder structures - lowpass T-type and Pi-type with and without finite zeros (four types in total)

Computation of element values - three-step procedure

LECTURE 6, Analog Filters

Passive Filter Structures with Discrete Elements

Doubly resistively terminated LC-Filters Highpass, bandpass, and bandstop filter structures Frequency transformed lowpass filter structures Three-step procedure Transfer function computations Chain matrix of a two-port Cascaded two-ports

LECTURE 7, Analog Filters

Passive Filter Structures with Distributed Elements

Unit element - lossless transmission line

Richards' variable $\Psi = \tanh(s\tau)$

Doubly resistively terminated filters

Relation to a Ψ -domain reference filter - simplifies the design

Ladder structures

Richards' structures

LECTURE 8, Analog Filters

Active Filter Structures

Inductors realized using capacitors and active elements

Operational (OP) amplifier

Ideal OP amp - infinite open-loop gain

Practical OP amp - finite gain, first-order model

Unity-gain bandwidth

Gain-bandwidth product

Transfer function computations for closed-loop systems

Filter structures

Coupled forms

Cascade, parallel (sensitive!), multiple feedback

Simulation of LC ladder networks

Topologic simulation: voltages/currents --> signal-flow-graph with adders, integrators, and inverters

Immitance simulation: inductors simulated using e.g. general immitance converters (GICs)

Wave active filters: derived using voltage waves instead of voltages and currents (change of variables)

Focus on cascade form

LECTURE 9, Analog Filters

Active Filter Structures

Cascade form

First-order sections, LP, HP, AP

Second-order sections, LP, HP, BP, LP and HP notch (BS)

LECTURE 10, Analog Filters

Active Filter Structures

Simulation of LC ladder networks

Topologic simulation – Leapfrog filters

Immitance simulation

Wave active filters

Summary of the Course